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PREFACE

During recent years, the problems involved in understanding and pre-
dicting climate and climatic changes have become topics of increasing interest
among both scientists and the public. This upsurge of interest has resulted
from the realization that human endeavors are vulnerable to uncertainties
in climate, and that human activities may be causing climatic changes. The
transfer of solar and infrared radiation represents the prime physical process
that drives the circulation of the atmosphere and the ocean currents. It is
apparent that an understanding of climate and the mechanisms of climatic
changes must begin with detailed understanding of radiative processes and
the radiative balance of the earth and the atmosphere.

Moreover, since the successive launches of meteorological satellites in
the sixties, applications of the principle of radiative transfer have been fruitful.
Using data gathered by these satellites and the principle of radiative transfer,
we now are capable of deriving profiles of the temperature and various
optically active gases such as water vapor and ozone in our atmospheres.
Information of such profiles significantly enhance our understanding of
weather and climate of the earth. With the progressive comprehension of the
physical interaction of clouds and aerosols with solar and infrared radiation,
the quantitative inference of the composition and structure of globally distri-
buted cloud systems and aerosols appears feasible. It is evident that the
sounding techniques developed for the earth's atmosphere may be applied
directly to other planetary atmospheres as well.

ix



x Preface

Although there have been a number of important reference books written
in the field of atmospheric radiation, none of them can be adequately adopted
as textbooks in atmospheric sciences. This is either because the books are
oriented toward a literature surveyor because they are lacking in presenta-
tions on one or several aspects of scattering and absorption processes in
planetary atmospheres. Furthermore, none of the published books so far
has presented applications oflight scattering and radiative transfer principles
to remote sensing and radiation climatology. At this time, when satellite
sensing, laser applications, and radiative transfer are becoming increasingly
important in conjunction with the study of weather and climate of planetary
atmospheres, there is indeed an urgent need for a coherent and logical devel-
opment on the subject of radiation processes in planetary atmospheres. It
is the purpose of this book to present and to unify all of the topics associated
with the fundamentals of atmospheric radiation. The level of presentation
is in such a manner that seniors and graduate students in the atmospheric
sciences, and research beginners in atmospheric radiation can follow and
absorb the mathematical deductions and fundamental physical laws that
govern the radiation field of planetary atmospheres.

The book is divided into eight chapters. Chapter 1 introduces concepts,
definitions, various basic radiation laws, and the fundamental equations for
radiative transfer. Chapter 2 describes the characteristics of the solar radia-
tion that is available at the top of the earth's atmosphere. Chapter 3 is con-
cerned with the absorption and scattering processes of solar radiation in
molecular atmospheres. Photochemical processes involving ultraviolet radia-
tion and ozone are discussed, and the concept of polarization and the scat-
tering of sunlight by Rayleigh molecules are presented. Chapter 4 deals with
infrared radiative transfer in the earth-atmosphere system. The fundamental
theory of infrared transfer is covered, and absorption band models and the
principle of radiation charts are discussed. Chapter 5 presents the single
scattering processes involving aerosols and cloud particles in the atmosphere.
The Maxwell equations are first introduced, and the solution of the vector
wave equation, which leads to the Mie theory, is derived. The geometrical ray
optics approach to light scattering by spherical water drops and hexagonal
ice crystals is outlined. In Chapter 6, the principles of multiple scattering in
plane-parallel atmospheres are introduced. This chapter includes the pre-
sentation of the basic equations, some approximations for radiative transfer
problems, the principles of invariance, and various methods for solving the
fundamental transfer equation. Applications of the basic radiative transfer
theory to remote sensing of the atmosphere are given in Chapter 7. Dis-
cussions are made on the inversion principles used in determining tem-
perature and gaseous profiles by means of satellite infrared sounding chan-
nels. Various inversion methods also are introduced. The uses of microwave
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sounders, and the reflected and transmitted sunlight as a means of remote
sensing are further discussed. The basic principles of radar and lidar back-
scattering techniques for cloud and precipitation detection also are described.
The subject matter associated with radiation climatology is covered in the
final chapter. This chapter introduces broadband radiation observations
from satellites, and reports the latitudinal and global radiation budgets
determined from satellite measurements. Theoretical radiation budget stud-
ies, and simple climate models based on the radiative balance are further
described. Problem sets with varying degrees of difficulty are prepared in
each chapter.

In writing this book, I have assumed that the readers already have had
introductory courses in physics and calculus. Although the book has been
written primarily for students and researchers in the field of atmospheric
sciences, students and researchers in other disciplines, including planetary
exploration, electromagnetic scattering, optics, and geophysics, also may
find various topics in the text of some interest and use. I have used materials
in Chapters 1�~�4 in a senior and first-year graduate course entitled "Atmo-
spheric Radiation: Physical Meteorology I." I also have utilized the subject
matter in Chapters 5-6 and Chapters 7-8 in advanced graduate courses
entitled "Radiative Transfer" and "Remote Sensing from Satellites," respec-
tively. Some of the materials presented in the text are original and have not
been published elsewhere.

During the course of the writing, I have found an enormous amount of
literature in the field of atmospheric radiation, resulting from the overlap
of meteorology, astrophysics, planetology, electrical engineering, and applied
physics. Generally, I have avoided citing the original reference on the topic
discussed in the text. Interested readers who wish to further study the subject
matter can find the relevant papers from the suggested references which are
either published books or review papers. However, I have attempted to make
reference to important contributions, which represent recent developments
and significant finds in the field of atmospheric radiation and remote sensing.
I have undertaken an almost impossible task of unifying diffuse notations
used in fields of scattering, absorption and emission, radiative transfer, and
satellite sensing. Unfortunately, I find that it is unavoidable to repeat some
symbols to preserve the distinction of various content areas. Finally, a num-
ber of subject matters, which are not described in the text, are presented
through exercises at the end of each chapter.

I am indebted to the following friends and colleagues who took the time
to read various chapters of the manuscript and offered many helpful sug-
gestions for improvements: P. Barber, K. L. Coulson, A. Fymat, J. F. King,
C. B. Leovy, J. North, and T. Sasamori. During the course of the writing, my
research programs have been continuously supported by the Atmospheric
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Research Section of the National Science Foundation and the Air Force
Geophysics Laboratory. Their support has made possible a number of
presentations in the text. Appreciation is extended to the University of Utah
for granting me a David P. Gardner Faculty Fellow Award which released
my teaching duty in the winter quarter of the 1978/1979 academic year during
which considerable writing was accomplished. I would also like to thank
R. Coleman and K. Hutchison for independently working out most of the
exercises and for assisting me in proofreading the manuscript, and Mrs. D.
Plumhof for typing various versions of the manuscript.



In the northern darkness there is a fish and his name is Kun. The Kun is so
huge that he measures many thousand miles. He changes and becomes a bird
whose name is Pengo The back of the Peng also measures many thousand
miles across and, when he rises up and flies off, his wings are like clouds all
over the sky. When the sea begins to move, this bird journeys to the southern
darkness, and the waters are roiled for three thousand miles. He beats the
whirlwind and rises ninety thousand miles, setting off on the sixth month
gale, wavering heat, bits of dust, living things blown about by the wind-the
sky looks very blue. Is that its real color, or is it because it is so far away and
has no end?

Chuang Tzu
�~ 339-295 B.C.
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Chapter 1
FUNDAMENTALS OF RADIATION

1.1 CONCEPTS, DEFINITIONS, AND UNITS

1.1.1 Electromagnetic Spectrum

The most important of the processes responsible for energy transfer in the
atmosphere is electromagnetic radiation. Electromagnetic radiation travels
in the wave form, and all electromagnetic waves travel at the same speed,
which is the speed of light. This is 2.99793 ± 1 x 108 m sec- 1 in a vacuum
and at very nearly this speed in air. Visible light together with gamma rays,
x rays, ultraviolet light, infrared radiation, microwaves, television signals,
and radio waves form the electromagnetic spectrum.

The retina of the human eye is sensitive to electromagnetic waves with
frequencies between 4.3 x 1014 vibrations per second (usually written as
cycles per second and abbreviated cps) and 7.5 x 1014 cps. Hence, this band
of frequencies is called the visible region of the electromagnetic spectrum.
The eye, however, does not respond to frequencies of the electromagnetic
waves higher than 7.5 x 101 4 cps. Such waves, lying beyond the violet edge
of the spectrum, are called ultraviolet light. Moreover, if the waves have
frequencies lower than 4.3 x 1014 cps, the eye again does not respond to
them. These waves, having frequencies lower than the lowest frequency of
visible light at the red end of the spectrum and higher than about 3 x 101 2 cps,
are called infrared light or infrared radiation. Just beyond the infrared portion
of the spectrum are the microwaves, which cover the frequency from about
3 x 1010 to 3 X 1012 cps. The most significant spectral regions associated

1
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Wavelength Frequency
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3X 10'0

3X10·

3X 10'

3X 10·

3X 10'

Fig. 1.1 The electromagnetic spectrum.
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with the radiative energy transfer in planetary atmospheres lie between the
ultraviolet light and microwaves.

The x ray region of the electromagnetic spectrum consists of waves with
frequencies ranging from about 3 x 101 6 to 5 X 101 8 cps, and is adjacent
to the ultraviolet region in the spectrum. The gamma-ray region of the
spectrum has the highest frequencies of all, ranging upward from about
3 x 101 9 cps. At the other end of the spectrum beyond the microwave region
is the television and FM band of frequencies, extending from about 3 x 108

to 3 X 105 cps. Radio waves have the lowest frequencies in the spectrum,
extending downward from about 3 x 105 cps.

Electromagnetic waves often are described in terms of their wavelength
rather than their frequency. The following general formula connects fre-
quency vand wavelength 2:

2 = elv, (1.1)

where e represents the speed of light in a vacuum. The formula is valid for
any type of wave, and is not restricted to electromagnetic waves. It is cus-
tomary to use wave number v to describe the characteristics of infrared
radiation. It is defined by

v = Vic = 1j},. (1.2)

Thus, a 10 micrometer Cum) (1 ,urn = 10- 4 em) wavelength is equal to a
1000 em -1 wave number. In the microwave region, however, a frequency
unit called gigahertz (GHz) is commonly used. One GHz is equal to 109

cycles per second. Thus, 1 ern is equivalent to 30 GHz.
Figure 1.1 shows the complete electromagnetic spectrum with frequencies

and wavelengths indicated. The names given to the various parts of the spec-
trum are also shown.

1.1.2 Solid Angle

The analysis of a radiation field often requires the consideration of the
amount of radiant energy confined to an element of solid angle. The solid
angle is defined as the ratio of the area a of a spherical surface intercepted by
the core to the square of the radius, r, as indicated in Fig. 1.2. It can be written

Fig. 1.2 Definition of a solid angle.
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Fig. 1.3 Illustration of a solid angle and its representation in polar coordinates. Also shown is
a pencil of radiation through an element of area dA in directions confined to an element of
solid angle dQ.

as

(1.3)

Units of the solid angle are expressed in terms of the steradian (sr). For a
sphere whose surface area is 4nr 2

, its solid angle is 4n Sf.

To obtain a differential elemental solid angle, we construct a sphere whose
central point is denoted as O. Assuming a line through point 0 moving in
space and intersecting an arbitrary surface located at a distance r from point
0, then as evident from Fig. 1.3 the differential area in polar coordinates is
given by

da = (r de)(r sin e d¢).

Hence, the differential solid angle is

dQ = da/r 2 = sin e de d¢,

(1.4)

(1.5)

where e and ¢ denote the zenithal and azimuthal angles, respectively, in
polar coordinates.

1.1.3 Basic Radiometric Quantities

Consider the differential amount of radiant energy dE). in a time interval
dt and in a specified wavelength interval Ato}. + dA, which crosses an element
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of area dA depicted in Fig. 1.3, and in directions confined to a differential
solid angle, which is oriented at an angle 8 to the normal of dA. This energy
is expressed in terms of the specific intensity I A by

dEA= IAcos8dOdAdAdt. (1.6)

Equation (1.6) defines the monochromatic intensity (or radiance) in a general
way as

dEA
IA= -co-s-8-d-O-d-'.:-A-d-t-dA- (1.7)

Thus the intensity is in units of energy per area per time per frequency and
per steradian. It is evident that the intensity implies a directionality in the
radiation stream. Commonly, the intensity is said to be confined in a pencil
of radiation.

The monochromatic flux density or the monochromatic irradiance of radiant
energy is defined by the normal component of I A integrated over the entire
spherical solid angle and may be written as

Fie = In I A COS 8dO.

In polar coordinates, we write

(2n (n/2 .
FA = Jo Jo IA(8,¢)cos8sm8d8d¢.

(1.8)

(1.9)

It can easily be shown that for isotropic radiation, i.e., if radiant intensity is
independent of direction, the monochromatic flux density is

(1.10)

The total flux density of radiant energy, or irradiance for all wavelengths
(energy per area per time), can be obtained by integrating the monochromatic
flux density over the entire electromagnetic spectrum:

F = Iow FA o: (1.11)

Moreover, the total flux I, or radiant power W (energy per time) is defined
by

f= LFdA. (1.12)

The monochromatic flux density in the frequency domain may be written
in the form

dF
F i = dv· (1.13)
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TABLE 1.1 Symbols, Dimensions, and Units of Various Radiometric Quantities

Symbol Quantity

E Energy
f Flux

Luminosity
F Flux density (irradianee)

Emittance
I Intensity (radiance)

Brightness (luminance)

Dimension"

ML'T- 2

ML2T- 3

MT- 3

Unit (cgs)"

Erg
Erg per second (erg sec - 1)
Erg per second per square centimeter

(erg ern - 2 sec - [)
Erg per second per square centimeter

per steradian (erg cm - 2 sec- [ sr - [)

"M is mass, L is length, and T is time.
b 1 erg = 10- 7 joule (1), 1 watt (W) = 1 joule sec-I.

From the relation between the wavelength and frequency denoted in Eq.
(1.1), we shall have

(1.14)

Likewise, the intensity quantity in wavelength and frequency domains shall
be connected by

(1.15)

A similar relation between the monochromatic flux density or intensity in
wave number and wavelength (or frequency) domains may be expressed by
means of Eq. (1.2).

When the flux density or the irradiance is from an emitting surface, the
quantity is called the emittance. When expressed in terms of wavelength,
it is referred to as the monochromatic emittance. The intensity or the radiance
is also called the brightness or luminance (photometric brightness). The total
flux from an emitting surface is often called luminosity. The basic radiometric
quantities are summarized in Table 1.1, along with their symbols, dimensions,
and units.

1.1.4 Concepts of Scattering and Absorption

Most of the light that reaches our eyes comes not directly from its sources
but indirectly by the process of scattering. We see diffusely scattered sunlight
when we look at clouds or at the sky. The land and water surfaces, and the
objects surrounding us are visible through the light that they scatter. An
electric lamp does not send us light directly from the luminous filament but
usually glows with the light that has been scattered by the glass bulb. Unless
we look at a source, such as the sun, a flame, or an incandescent filament with
a clear bulb, we see light that has been scattered. In the atmosphere, we see
many colorful examples of scattering generated by molecules, aerosols, and
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clouds containing droplets and ice crystals. Blue sky, white clouds, and
magnificent rainbows and halos, to name a few, are all optical phenomena
due to scattering. Scattering is a fundamental physical process associated
with the light and its interaction with matter. It occurs at all wavelengths
covering the entire electromagnetic spectrum.

Scattering is a physical process by which a particle in the path of an electro-
magnetic wave continuously abstracts energy from the incident wave
and reradiates that energy in all directions. Therefore, the particle may be
thought of as a point source of the scattered energy. In the atmosphere,
the particles responsible for scattering cover the sizes from gas molecules
( �~ 10- 8 em) to large raindrops and hail particles �(�~�1 em). The relative
intensity of the scattering pattern depends strongly on the ratio of particle
size to wavelength of the incident wave. If scattering is isotropic, the scat-
tering pattern is symmetric about the direction of the incident wave. A small
anisotropic particle tends to scatter light equally into the forward and rear
directions. When the particle becomes larger, the scattered energy is in-
creasingly concentrated in the forward directions with greater complexities
as evident from Fig. 1.4, where scattering patterns of three particle sizes are
illustrated. Distribution of the scattered energy involving spherical and
certain symmetrical particles may be quantitatively determined by means of
the electromagnetic wave theory. When particles are much smaller than the
incident wavelength, the scattering is called Rayleigh scattering, which leads
to the explanation of blue sky and sky polarization as will be discussed in
Chapter 3. For particles whose sizes are comparable to or larger than the
wavelength, the scattering is customarily referred to as Mie scattering. The
mathematical theory of Mie scattering for spherical particles, and the asso-
ciated geometrical optics for water droplets and hexagonal crystals will be
presented in Chapter 5.

Incident beam (a)

---. CO
(el Forward lobe

Fig. 1.4 Demonstrative angular patterns of the scattered intensity from particles of three
sizes: (a) small particles, (b) large particles, and (c) larger particles.
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In a scattering volume, which contains many particles, each particle is
exposed to, and also scatters, the light which has already been scattered by
other particles. To demonstrate this concept we refer to Fig. 1.5. A particle
at position P removes the incident light by scattering just once, i.e., single
scattering, in all directions. Meanwhile, a portion of this scattered light
reaches the particle at position Q, where it is scattered again in all directions.
This is called secondary scattering. Likewise, a subsequent third-order scat-
tering involving the particle at position R takes place. Scattering more than
once is called multiple scattering. It is apparent from Fig. 1.5 that some of the
incident light that has been first scattered away from the direction d may
reappear in this direction by means of multiple scattering. Multiple scattering
is an important process for the transfer of radiant energy in the atmosphere,
especially when aerosols and clouds are involved. Chapter 6 deals with the
theory of multiple scattering.

Scattered light

Incident light

Fig. 1.5 Multiple scattering process.

Scattering is often accompanied by absorption. Grass looks green because
it scatters green light more effectively than red and blue light. Apparently,
red and blue light incident on the grass is absorbed. The absorbed energy is
converted into some other form, and it is no longer present as red or blue
light. In the visible spectrum, absorption of energy is nearly absent in molec-
ular atmospheres. Clouds also absorb very little visible light. Both scat-
tering and absorption remove energy from a beam of light traversing the
medium. The beam oflight is attenuated, and we call this attenuation extinc-
tion. Thus, extinction is a result of scattering plus absorption. In a non-
absorbing medium, scattering is the sole process of extinction.

In the field of light scattering and radiative transfer, it is customary to use
a term called cross section, which is analogous to the geometrical area, to
denote the amount of energy removed from the original beam by the particles.
In the case when the cross section is referred to a particle, its units are in
area (cm'} Thus, the extinction cross section, in units of area, is the sum of
the scattering and absorption cross sections. However, when the cross
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section is in reference to unit mass, its units are in area per mass (em2 g �~ 1).

In this case, the term mass extinction cross section is used in the transfer
study. The mass extinction cross section is therefore the sum of the mass
absorption and mass scattering cross sections. Furthermore, when the extinc-
tion cross section is multiplied by the particle number density (em �~ 3) or
when the mass extinction cross section is multiplied by the density (g em - 3)
the quantity is referred to as extinction coefficient, which has units of per
length (em - 1). In the field of infrared radiative transfer, the mass absorption
cross section is simply referred to as absorption coefficient.

Absorption of energy by particles and molecules leads to emission. The
concept of emission is associated with blackbody radiation, and it is to be
discussed in the following section. Moreover, a number of minor atmospheric
constituents exhibit complicated absorption line structures in the infrared
regions. Section 1.3 and Chapter 4 will provide discussions on the funda-
mentals of the line formation and the transfer of infrared radiation in the
atmosphere. A fundamental understanding of the scattering and absorption
processes in the atmosphere is imperative for the studies of the radiation
budget and climate of planetary atmospheres and for the exploration of
remote sounding techniques to infer the atmospheric composition and
structure.

1.2 BLACKBODY RADIATION

1.2.1 Planck's Law

In order to have a theoretical explanation for the cavity radiation, Planck
in 1901 was led to make two assumptions about the atomic oscillators.
First, he postulated that an oscillator cannot have any energy but only
energies given by

E = nhv, (1.16)

where vis the oscillator frequency, h is Planck's constant, and n is called a
quantum number that can take on only integral values. Equation (1.16)
asserts that the oscillator energy is quantized. Although later developments
revealed that the correct formula for a harmonic oscillator is E = (n + !)hv,
the change introduces no difference to Planck's conclusions. Secondly, he
postulated that the oscillators do not radiate energy continuously, but only
injumps, or in quanta. These quanta of energy are emitted when an oscillator
changes from one to another of its quantized energy states. Hence, if the
quantum number changes by one unit, the amount of energy that is radiated
is given by

t...E = t...nhv = hv. (1.17)
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On the basis of these two assumptions, Planck was able to derive from a
theoretical point of view the so-called Planck function which is expressed by

2h'V3

Bv(T) = c2(ehvlKT _ 1)' (1.18)

where K is Boltzmann's constant, c the velocity of light, and T the absolute
temperature. The Planck and Boltzmann constants are determined from the

6.0

r--
0
)( 5.0

E

�-�~
I ...
Ul

4.0N
I

E
�~

>-
I-- 3.0
(f)

z
W
I--
Z

2.0

WAVELENGTH (fLm)

Fig. 1.6 Blackbody intensity per wavelength for a number of emitting temperatures.
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(1.19)

(1.20)

experiment, and they are given by h = 6.6262 X 10- 2 7 erg sec, and K =
1.3806 x 10- 16 erg deg - 1. The derivation of the Planck function is given
in Appendix C.

The Planck function relates the emitted monochromatic intensity with
the frequency and the temperature of the emitting substance. By utilizing
the relation between frequency and wavelength shown in Eq. (1.15),Eq. (1.18)
can be written as

2hc 2

BiT) = J.5(eke/KAT _ 1)"

Figure 1.6 shows curves of BiT) versus wavelength for a number of emitting
temperatures. It is evident that the blackbody radiant intensity increases
with the temperature, and that the wavelength of the maximum intensity
decreases with increasing temperature.

1.2.2 Stefan-Boltzmann Law

The total radiant intensity of a blackbody can be derived by integrating
the Planck function over the entire wavelength domain from 0 to 00. Hence,

roo roo 2hc 2r 5dJ.
B(T) = Jo BiT)dJ. = Jo (eke/kAT - 1)"

On introducing a new variable x = hclk). T, Eq. (1.20) becomes

2k4T4 roo x 3 dx
B(T) = h3c2 Jo (eX - 1)·

The integral term in Eq. (1.21) is equal to n4/15. Thus, defining

b = 2n 4k4/(15c2h 3
) ,

we then have

(1.21)

(1.22)

(1.23)

Since blackbody radiation is isotropic, the flux density emitted by a black-
body is therefore [see Eq. (1.10)]

F = nB(T) = (JT4
, (1.24)

where (J is the Stefan-Boltzmann constant and is equal to 5.67 x 10- 5 erg
cm- 2 sec- 1 deg- 4 . Equation (1.24) states that the flux density emitted by a
blackbody is proportional to the fourth power of the absolute temperature.
This is the Stefan-Boltzmann law, which is fundamental in the field of infrared
radiative transfer.
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1.2.3 Wien's Displacement Law

Wien's displacement law states that the wavelength of the maximum
intensity for blackbody radiation is inversely proportional to the tempera-
ture. By differentiating the Planck function with respect to wavelength, and
by setting the result equal to zero, i.e.,

aBA(T) = 0
aJc '

we obtain the wavelength of the maximum

(1.25)

(1.26)

where a = 0.2897 ern deg. From this relation, we may determine the tempera-
ture of a blackbody from the measurement of the maximum monochromatic
intensity. The dependence of the position of the maximum intensity on
temperature can be seen from the blackbody curves depicted in Fig. 1.6.

1.2.4 Kirchoff's Law

The foregoing three fundamental laws are essentially concerned with
radiant intensity emitted by a blackbody. The amount of radiant intensity is
associated with the emitting wavelength and the temperature of the medium.
A medium may absorb radiation of a particular wavelength, and at the same
time also may emit radiation of the same wavelength. The rate at which
emission takes place is a function of temperature and wavelength. This is the
fundamental property of a medium under the condition of thermodynamic
equilibrium. The physical statement regarding absorption and emission was
first proposed by Kirchhoff in 1859.

To understand the physical meaning of Kirchhoff's law, we consider a
perfectly insulated enclosure having black walls. Assume that this system has
reached the state of thermodynamic equilibrium characterized by uniform
temperature and isotropic radiation. Because the walls are black, radiation
emitted by the system to the walls is absorbed. Moreover, because there is an
equilibrium, the same amount of radiation absorbed by the walls is also
emitted. Since the blackbody absorbs the maximum possible radiation, it has
to emit that same amount ofradiation. Hit emitted more, equilibrium would
not be possible, and this would violate the second law of thermodynamics.
Radiation within the system is referred to as blackbody radiation, and the
amount of radiant intensity is a function of temperature only.

On the basis of the preceding, for a given wavelength, the emissivity SA'

defined as the ratio of the emitting intensity to the Planck function, of a
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medium is equal to the absorptivity A,b defined as the ratio of the absorbed
intensity to the Planck function, ofthat medium under thermodynamic equi-
librium. Hence we may write

(1.27)

A medium with an absorptivity AA absorbs only AA times the blackbody
radiant intensity BJ.(T), and therefore emits OJ. times the blackbody radiant
intensity. For a blackbody, absorption is a maximum and so is emission. Thus,
we shall have

(1.28)

for all wavelengths. A gray body is characterized by incomplete absorption
and emission, and may be described by

(1.29)

Kirchhoff's law requires the condition of thermodynamic equilibrium, such
that uniform temperature and isotropic radiation are achieved. Obviously,
the radiation field of the earth's atmosphere as a whole is not isotropic and
its temperatures are not uniform. However, in a localized volume below
about 40 km, to a good approximation, it may be considered to be isotropic
with a uniform temperature in which energy transitions are determined by
molecular collisions. It is in the context of this local thermodynamic equi-
librium that Kirchhoff's law is applicable to the atmosphere.

1.3 ABSORPTION (EMISSION) LINE FORMATION
AND LINE SHAPE

An inspection of the high resolution spectroscopy reveals that the emission
spectra of certain gases are composed of a large number of individual and
characteristic spectral lines (see Fig. 4.2). In the previous section, we indicated
that Planck successfully explained the nature of radiation from heated solid
objects of which the cavity radiator formed the prototype. Such radiation
generates continuous spectra, and is contrary to line spectra. We note, how-
ever, that Planck's quantization ideas, properly extended, lead to an under-
standing of line spectra also.

Investigation ofthe hydrogen spectrum led Bohr in 1913 to postulate that
the circular orbits of the electrons were quantized, that is, their angular
momentum could have only integral multiples of a basic value. He assumed
that the hydrogen atoms exists, like Planck's oscillators, in certain stationary
states in which it does not radiate. Radiation occurs only when the atom
makes a transition from one state with energy E; to a state with lower energy
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E j • Thus we write

(1.30)

where hifrepresents the quantum of energy carried away by the photon, which
is emitted from the atom during the transition. The lowest energy state is
called the ground state of the atom. When an electron of an atom absorbs
energy due to collisions and jumps into a larger orbit, for example, the atom
is said to be in an excited state. Then, according to Eq. (1.30), a sudden transi-
tion will take place, and the atom emits a photon of energy and collapses to a
lower energy state. This is illustrated in Fig. 1.7 for a hydrogen atom. Also
shown in this figure is the absorption of a photon by a stationary hydrogen
atom.

Bohr further postulated that the angular momentum L can take on only
discrete values given by

L = n(h/2n), n = 1,2,3, .... (1.31)
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Fig. 1.7 lIlustration of emission and absorption for a hydrogen atom which is composed of
one proton and one electron. The radius of the circular orbit r is given by n 2 x 0.53 A, where n
is the quantum number, and 1 A = 10- 8 em.
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With this selection rule, he showed from the equation of motion for the
electron that the total energy state of the system is (cgs units, see Exercise 1.9)

E = -(2n2nv4jh2)n-2, n = 1,2,3, ... , (1.32)

where me is the mass of the electron, and e the charge carried by the electron.
It follows from Eq. (1.30)that the frequency of emission or absorption lines in
the hydrogen spectum is

(1.33)_ = 2n
2m

ee
4

�(�~ _ �~�)
V h3 / k2 '

where j and k are integers describing, respectively, the lower and higher
energy states. Figure 1.8 shows an energy diagram for the hydrogen. In the
field of spectroscopy, energy is usually given in units of electron volts (eV) or
in units of wave number (em -1). An electron volt is the energy acquired by an
electron accelerated through a potential difference of one volt, and is equi-
valent to 1.602 x 10- 1 2 erg.
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Fig. 1.8 An energy level diagram for the hydrogen showing the quantum number n for each
level and some of the transitions that appear in the spectrum. An infinite number of levels is
crowded in between the levels marked n = 6 and 11 = cc,



16 1 Fundamentalsof Radiation

Each quantum jump between fixed energy levels results in emission or
absorption of characteristic frequency or wavelength. These quanta appear
in the spectrum as emission or absorption lines. For the simple hydrogen
atom described previously the line spectrum is relatively simple, whereas the
spectra of water vapor, carbon dioxide, and ozone molecules are considerably
more complex.

Monochromatic emission is practically never observed. Energy levels
during energy transitions are normally changed slightly due to external
influences on atoms and molecules, and due to the loss of energy in emission.
As a consequence, radiation emitted during repeated energy transitions is
nonmonochromatic, and spectral lines of finite widths are observed. The
broadening of spectral lines is caused by (1) the damping of vibrations of
oscillators resulting from the loss of energy in emission (the broadening of
lines in this case is considered to be normal), (2) the perturbations due to
reciprocal collisions between the absorbing molecules, and between the
absorbing and nonabsorbing molecules, and (3) the Doppler effect resulting
from the difference in thermal velocities of atoms and molecules. The broad-
ening of lines due to the loss of energy in emission (natural broadening) is
practically negligible as compared with that caused by collisions and the
Doppler effect. In the upper atmosphere, we find a combination of collision
broadening and Doppler broadening, whereas in the lower atmosphere,
below about 40 km, the collision broadening prevails because of the pressure
effect.

1.3.1 Pressure Broadening

The shape of spectral lines due to the pressure broadening is given by the
Lorentz profile. It is expressed by the formula

(1.34)

where ki' denotes the absorption coefficient, Vo is the frequency of an ideal,
monochromatic line, o: is the half width of the line at the half maximum and
is a function of pressure and to a lesser degree of the temperature, f(v - vo)
represents the shape factor of a spectral line, and the line strength or line
intensity S is defined by

f oo kjidv = S.
-00

(1.35)

In this case, we say the absorption coefficient is normalized. Figure 1.9depicts
a plot for the Lorentz profile.
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Doppler

Fig. 1.9 Lorentz and Doppler line shapes for similar intensities and line widths.

17

The Lorentz shape of infrared lines is fundamental for the theory of infrared
radiative transfer in the atmosphere. Thus it is desirable to give a brief ex-
planation of how the formula denoted in Eq. (1.34) is derived. An isolated
molecule emits or absorbs an almost purely harmonic wave given by

f(t) = A cos 2nv ot, (1.36a)

where A is an arbitrary amplitude. During the period - tl2 to t12, the dis-
tribution of amplitude g(v) of the wave in the discrete frequency domain may
be obtained from the Fourier cosine transform as follows:

g(v) = �~ �f�~�/�2 (A cos 2nv ot')cos 2nvt' dt'

= _A_ [sin n(vo + v)t sin n(v o - V)tJ. (1.36b)
(2n)3/2 VA + v + va - v

Generally, the widths of absorption lines are much smaller than va' i.e.,
v= va + �~�v�, so that the first term in Eq. (1.36b) may be neglected when it is
compared with the second.

The only deviation from purely harmonic behavior would be produced by
the damping due to the loss of energy in emission. In the infrared, the spectro-
scopic effect of this damping is extremely small. However, a radiating mole-
cule upon collision with another molecule would alter the radiating harmonic
wave train owing to the intermolecular forces, and the frequency of the
emitting molecule would be temporarily shifted by an appreciable amount.
Since the collision may be considered to be instantaneous, one may assume
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that the principal effect of the collision is to destroy the phase coherence of
the emitted wave train. That is to say, that after the collision the molecule
starts emitting with another phase and the new phases are now randomly
distributed. From general statistical principles, the time between collisions is
distributed according to Poisson's law that the probability a collision occurs
between t and t + dt is e- t

/to, where to is the mean time between collisions. All
the initial phases of the wave trains have to be averaged. Thus, the absorption
coefficient will be given by

(1.34a)

where [g(V)]2 is the distribution of intensity, and A' is a constant. The integral
may easily be evaluated. Further, by letting lito = 27HX and utilizing Eq. (1.35),
we find Eq. (1.34a) becomes equivalent to Eq. (1.34). Here, Ln« is the number
of collisions per molecule per unit time. [Exercise 1.10 requires the derivation
ofEq. (1.34) from Eq. (1.34a).] We note that the Lorentz line shape also can be
derived from the classical theory of absorption and dispersion as shown in
Appendix D.

From the kinetic theory of gases, the dependence of the half width o: on the
pressure and temperature is given by

(1.37)

where CXo is the width at the standard pressure Po and temperature To.

1.3.2 Doppler Broadening

Assuming that there is no collision broadening in a highly rarefied gas, a
molecule in a given quantum state radiates at frequency vo' If this molecule
has a velocity component u in the line of sight (the line joining the molecule
and the observer), and if v « C, the velocity of light, the frequency Vo appears
shifted as seen by a stationary observer to the frequency

v= vo(l ± vic). (1.38)

Let the probability that the velocity component lies between v and v + dv
be p(v) dv. From the kinetic theory, if the translational states are in thermo-
dynamic equilibrium, p(v) is given by the Maxwell-Boltzmann distribution
so that

p(v) dv = (mI2nKT)1/2 exp( - mv2/2KT) dv, (1.39)

where m is the mass of the molecule, K the Boltzmann constant, and T the
absolute temperature.
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To obtain the Doppler distribution, we insert the expression of v in
Eq. (1.38) into Eq. (1.39), and perform normalization to an integrated line
intensity S shown in Eq. (1.35). After these operations we find the absorption
coefficient in the form

where

aD = (vo/c)(2KT/m)1/2

(1.40)

(1.41)

is a measure of the Doppler width of the line. The half width at the half
maximum is ctD JIll2.

A graphical representation of the Doppler lir-e shape is also shown in
Fig. 1.9. Since the absorption coefficient of a Doppler line is dependent on
exp[ -(v - VO)2] , it is more intense at the line center and much weaker in
the wings than the Lorentz shape. This implies that when a line is fully
absorbed at the center, any addition of absorption will occur in the wings and
will be caused by collision effects rather than Doppler effects. One final note
may be in order. In the atmosphere above about 40 km where gases are at
low pressures, it becomes important to incorporate the combined influence
of the Lorentz and the Doppler broadening in the infrared transfer calcula-
tions. The shape factor for the combined profile is called the Voigt profile,
which involves an infinite integral of a complicated function determined
from Eqs. (1.34) and (1.40) (e.g., see Penner, 1959). Numerical calculations
are therefore required to evaluate the absorption coefficient.

1.4 SIMPLE ASPECTS OF RADIATIVE TRANSFER

1.4.1 The Equation of Transfer

A pencil of radiation traversing a medium will be weakened by its inter-
action with matter. If the intensity of radiation I;. becomes I;. + dl , after
traversing a thickness ds in the direction of its propagation, then

(1.42)

where p is the density of the material, and k;. denotes the mass extinction
cross section (in units of area per mass) for radiation of wavelength it The
mass extinction cross section is the sum ofthe mass absorption and scattering
cross sections as discussed in Section 1.1.4. Thus, the reduction in intensity
is caused by absorption in the material as well as scattering of radiation by
the material.
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On the other hand, the intensity may be strengthened by emission of the
material plus multiple scattering from all other directions into the pencil
under consideration at the same wavelength (see Fig. 1.5). We define the
source function coefficient j A such that the increase of intensity due to emis-
sion and multiple scattering is given by

(1.43)

where the source function coefficient j A has the same physical meaning as
the mass extinction cross section. Upon combining Eqs. (1.42)and (1.43), we
obtain

dIA= -kAPIAds + jAPds.

Moreover, it is convenient to define the source function J A such that

(1.44)

(1.45)

(1.46)

(1.47)

(1.49)

In this manner, the source function has units of radiant intensity. It follows
that Eq. (1.44) may be rearranged to yield

u,
-kd=-IA+JA.

AP s

This is the general equation of transfer without any coordinate system
imposed. It is fundamental in the discussion of any radiative transfer process.

1.4.2 Beer-Bouguer-Lambert Law

When both scattering and emission contributions may be neglected,
Eq. (1.46) reduces to the form

dIA

kAPds = -lA'

where kA now represents the mass absorption cross section (or simply
absorption coefficient) only. If the incident intensity at s = 0 is I A(O), then
the emergent intensity at a distance s apart shown in Fig. 1.10can be obtained
by integrating Eq. (1.47), and is given by

Iisl) = IA(O)exp ( - �f�~�' kAPdS). (1.48)

Assuming that the medium is homogeneous, then k A is independent of the
distance s. Thus, by defining the path length

{Sl
U = Jo pds,
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Fig. 1.10 Depletion of the radiant intensity in traversing an absorbing medium.

Eq. (1.48) becomes

(1.50)

This is known as Beer law or Bouguer law or Lambert law, and is referred
to here as the Beer-Bouguer-Lambert law, which states that the decrease
of the radiant intensity traversing a homogeneous absorbing medium is
according to the simple exponential function whose argument is the product
of the mass absorption cross section and the path length. It should be noted
that since this law involves no directional dependence, it is applicable not
only to the intensity quantity but also the flux density and the flux.

By virtue of Eq. (1.50), we may define the monochromatic transmissivity
:FA as

(1.51)

Moreover, for a nonscattering medium, the monochromatic absorptivity,
representing the fractional part of the incident radiation that is absorbed by
the medium, is given by

(1.52)

Equations (1.51) and (1.52) are normally expressed in the wave number
domain in conjunction with the applications of infrared radiation. We note
that if there is a scattering contribution from the medium, certain portions
of the incident radiation may reflect back to the incident direction. Under
this circumstance, we may define the monochromatic reflectivity R A , which
is the ratio of the reflected (backscattered) intensity to the incident intensity.
On the basis of the conservation of energy we must have

(1.53)

for the transfer of radiation through a scattering and absorbing medium.
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1.4.3 Schwarzschild's Equation and Its Solution

1 Fundamentals of Radiation

Consider a nonscattering medium, which is a blackbody and which is in
local thermodynamic equilibrium. A beam of intensity 1). passing through
it will undergo absorption process, while emission from the matter also
takes place simultaneously. The source function in this case is given by the
Planck function, and can be expressed by

Hence, the equation of transfer may be written as

d1).
�~�kd = -1). + BiT)·).p s

(1.54)

(1.55)

(1.56)

This equation is called Schwarzschild's equation. The first term in the right-
hand side of Eq. (1.55) denotes the reduction of the radiant intensity due to
absorption, whereas the second term represents the increase of the radiant
intensity arising from blackbody emission of the material. To seek a solution
for the Schwarzschild equation, we define the monochromatic optical thick-
ness of the medium between points sand S1 as shown in Fig. 1.11 in the form

IS! r

<).(S1'S) = Js k).pds.

By noting that

Eq. (1.55) becomes

d1is)
d ( ) = -Us) + B).[T(s)].

"L). Sl>S

(1.57)

(1.58)

Upon multiplying Eq. (1.58) by a factor �e�~�r�A�(�s�j�,�s�)�, and integrating the thick-
ness ds from 0 to s1, we find

(1.59)

Fig. 1.11 Configuration of the optical thickness.
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(1.61)

Consequently,

lis1) = l l(O)e-'A(sl,O) + f;l Bl[T(s)]e-'A(Sj,S)klpds. (1.60)

The first term in Eg. (1.60) is essentially equivalent to Eq. (l.48), representing
the absorption attentuation of the radiant intensity by the medium. The
second term represents the emission contribution from the medium along
the path from 0 to sl' Ifthe temperature and density of the medium, and the
associated absorption coefficient along the path of the beam are known,
Eq. (1.60) can be integrated numerically to yield the intensity at the point
S1' Applications of Eq. (1.60) to infrared radiative transfer and to remote
sounding of atmospheric temperature profiles and compositions from orbit-
ing meterological satellites will be discussed in Chapters 4 and 7, respectively.

1.4.4 The Equation of Transfer for Plane-Parallel
Atmospheres

In problems of radiative transfer in plane-parallel atmospheres it is
convenient to measure linear distances normal to the plane of stratification
(see Fig. 1.12). Ifz denotes this distance, then the general equation of transfer
in Eq. (1.46) becomes

dl(z; e, ¢)
cosf kpdz = -l(z; e,¢) + J(z; e,¢),

where edenotes the inclination to the upward normal, and ¢ the azimuthal
angle in reference to the X axis. Here, we omit the subscript A on various
radiative quantities.

Introducing the normal optical thickness

T = !zoo kp dz' (1.62)

z

Fig. 1.12 Geometry for plane-parallel
atmospheres.
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measured from the outer boundary downward, we have

d1(r; j.1, ¢)
j.1 dr =1(r;j.1,¢)-J(r;j.1,¢), (1.63)

where j.1 = cos 8. This is the basic equation for the problem of multiple
scattering in plane-parallel atmospheres.

Following the same procedure as that described in Section 1.4.3, Eq. (1.63)
can be solved to give the upward and downward intensities for a finite
atmosphere which is bounded on two sides at r = 0 and r = r 1 as depicted
in Fig. 1.13. To obtain the upward intensity (j.1 > 0) at level r, we multiply
Eq. (1.63) by a factor e- 'Ill and perform integration from r to r = r L: This
leads to

Iit ;u, ¢) = 1(r1; u, ¢)e-(tt -')11l

+ (tt u«, j.1,¢)e-(t'-,)11l dr' (1 :2 j.1 > 0). (1.64)
J, j.1

To get the downward intensity (j.1 < 0) at level t, a factor etlll is used and j.1
is replaced by �~ p: After carrying out integration from t = 0 to r, we obtain
the expression

1(r; -j.1,¢) = 1(0; _j.1,¢)e- tlll

(t ( ')1 di'+ Jo Jti': -j.1,¢)e- t-t Il--;; (1:2 j.1 > 0). (1.65)

In Eqs. (1.64) and (1.65), 1(rl;j.1,¢) and 1(0; -/l,¢) represent, respectively,
the inward source intensities at the bottom and top surfaces (see Fig. 1.13).

I (0; flo ,1')

T=O

T

Top ----------''''-----------..,-----

Bottom ----"'-------------,. --------

Fig 1.13 Upward and downward intensities in a finite, plane-parallel atmosphere.



Exercises 25

For planetary applications, it is desirable to measure the emergent
outward intensities at the top and bottom of the atmosphere in conjunction
with remote sensing of atmospheric compositions, and radiative balance
studies. Upon setting T = 0 in Eq. (1.64), we find

(1.66)

where the first and second terms represent, respectively, the bottom surface
contribution (attenuated to the top) and the internal atmospheric contribu-
tion. Moreover, upon setting T = T 1 in Eq. (1.65), we get

where again the first and second terms represent, respectively, the top
surface contribution (attenuated to the bottom) and the internal atmospheric
contribution. Detailed applications of these two equations associated with
infrared transfer and multiple scattering will be discussed in Chapters 4
and 6.

EXERCISES

1.1 Show that for isotropic radiation, the monochromatic flux density is
FA = nIA ·

1.2 A meteorological satellite circles the earth at a height h above the
earth's surface. Let the radius of the earth be a; and show that the solid angle
under which the earth is seen by the satellite sensor is

1.3 Express the Planck function in the wavelength and wave number
domains from that in the frequency domain.

1.4 From Eq. (1.25), show that Eq. (1.26) is true.

1.5 Show that the maximum intensity of the Planck function is propor-
tional to the fifth power of the temperature.

1.6 An infrared scanning radiometer aboard a meteorological satellite
measures the outgoing radiation emitted from the earth's surface at the 10 flm
window region. Assuming that the effect of the atmosphere between the
satellite and surface can be neglected, what would be the temperature of the
surface if the observed radiance at 10 flm is 0.98 x 104 erg/sec/em?/flm/sr?
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1.7 A black land surface with a temperature of 15°C emits radiation at all
frequencies. What would be the emitted radiances at 0.7 .urn, 1000 em-), and
31.4 GHz? (Note: Use the appropriate Planck functions in the calculations.)

1.8 Assuming the average normal body temperature is 98°F, what would
be the emittance of the body? If it is not a blackbody but absorbs only 90%
of the incoming radiation averaged over all wavelengths, what would be the
emittance in this case? Also, at which wavelength does the body emit the
maximum energy?

1.9 (a) From Newton's second law for motion and Coulomb's law, find
the kinetic energy ofthe electron in the hydrogen atom moving with a velocity
v in a circular orbit of radius r centered on its nucleus. Express r in terms of
the quantum number n using the selection rule for the angular momentum
mvr. Then find the potential energy of the proton-electron system. By
combining the kinetic and potential energy, derive Eq. (1.32).

(b) Consider only the transitions between the ground state (n = 1)
and the excited states and let the highest quantum number be 6, compute the
wavelengths of hydrogen emission lines.

1.10 Derive Eq. (1.34) from Eq. (1.34a).

1.11 Prove that the line intensity S = f<X.l 00 kvdv for both Lorentz and
Doppler absorption lines.

1.12 Calculate and plot the shape factor ofthe Lorentz and Doppler profiles
for ozone whose half width is assumed to be 0.1 em -) in the wave number
domain.

1.13 A He-Ne laser beam at 0.6328.um with an output power of 5 mW
(10- 3 W) is passing through an artificial cloud layer 10 m in thickness and
is directed at 30° from the normal to the layer. Neglecting the effectof multiple
scattering, calculate the extinction coefficients (per length) if the measured
powers are 1.57576and 0.01554 mW. Also calculate the normal optical depths
in these cases.

1.14 The contrast of the object against its surroundings is defined by

where B represents the brightness of the object and Bo the brightness of the
background sky. By these definitions, B = B o when x ---+ 00, whereas B = 0
when x = 0, where x denotes the distance between the object and the observer.
For the normal eye the threshold contrast has a value of ±0.02. Assuming
that the extinction coefficient /3 is independent of the wavelength, show that
the visual range or visibility is given by x = 3.912//3.
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1.15 In reference to Fig. 1.10, if the reflectivity at s = °and s = 8 1 are RJ.,
what would be the value of IJ.(SI)?

1.16 By differentiation with respect to the optical thickness r show that
Eqs. (1.64) and (1.65) reduce to Eq. (1.63), the equation of transfer for plane
parallel atmospheres. Hint: Use the following Leibnitz's rule for differentia-
tion of integrals:

d i<P2(Y) 1<p2(Y) er d¢1 d¢2
-d F(x,y)dx = -a dx - F(¢I,y) -d + F(¢2,Y) _d .y <PI (Y) <P,(Y) Y Y Y

1.17 Consider an isothermal nonscattering atmosphere with a temperature
T and let the surface temperature of such an atmosphere be T s , derive an
expression for the emergent flux density at the top of an atmosphere whose
optical depth is 'I' Hint: Make use ofEq. (1.66).
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Penner, S. S. (1959). Quantitative Molecular Spectroscopy and Gas Emissioities. Addison-Wesley,
Reading, Massachusetts. Chapters 1-3 provide fundamental discussions on blackbody
radiation and absorption line profiles.



Chapter 2
SOLAR RADIATION AT THE TOP OF
THE ATMOSPHERE

2.1 THE SUN AS AN ENERGY SOURCE

The sun, formed about 4.6 billion years ago, is an ordinary body in the
cosmic hierarchy. Among billions of stars in the universe, the sun is about
average in mass but below average in size. The sun has one unique feature
in that it is 300,000 times closer to the earth than the next nearest star. With
a mean distance of about 1.5 x 108 km between the earth and the sun,
virtually all of the energy that the earth receives and that drives the earth's
atmosphere in motion comes from the sun.

The sun is a gaseous sphere whose radius is about 6.96 x 105 km with
a mass of approximately 1.99 x 103 5 g. Its main ingredients are primordial
hydrogen and helium plus a small amount of heavier elements such as
iron, silicon, neon, and carbon. Hydrogen makes up about 75% of the mass,
while the remaining 25% or so is helium. The temperature of the sun de-
creases from a central value of about 5 x 106°K to about 58000K at the
surface. The density within the sun falls off very rapidly with increasing
distance from the center. The central density is about 150 g em - 3, and at
the surface, it is about 10- 7 g em -3. The average density is about 1.4g cm ":'.
Approximately 90% of the sun's mass is contained in the inner half of its
radius.

The source of solar energy is believed to be generated from the steady
conversion of four hydrogen atoms to one helium atom in fusion reactions,
which take place in the deep interior of the sun with temperatures up to
many millions of degrees. The amount of energy released in nuclear fusions
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causes a reduction of the sun's mass. According to Einstein's law relating
the mass and energy, E = me", and converting the energy radiated by the
sun, we find that almost five million tons of mass per second are radiated
by the sun in the form of electromagnetic energy. In a billion years, it is
believed that the sun will radiate into space about 102 9 grams, which is
less than one part in 104 of its total mass. Thus, only an insignificant fraction
of the sun's substance has been lost by electromagnetic radiation. It is
estimated that only 5% of the sun's total mass has been converted from
hydrogen to helium in its lifetime thus far.

Because ofthe extremely high temperatures in the deep interior, collisions
between atoms are sufficiently violent to eject many electrons from their
orbits. Only the tightly bound inner electrons of heavy atoms will be retained.
The emitted energy caused by nuclear fusions in forms of photons can pass
through the inner part of the sun without being absorbed by the electrons.
However, closer to the sun's surface, the temperature decreases and the
heavier atoms such as iron begin to recapture their outer electrons. These
outer electrons are bound to the nucleus by relatively small forces, and
can be easily separated from the nucleus by the absorption of photons.
It follows that the flow of photons coming from the interior is blocked by
the appearance of the absorbing atoms. The blocking of these photons
will cause the temperature to drop sharply at some depth below the sur-
face. Thus, the outer region of the sun consists of a layer of relatively cool
gas resting on the top of a hotter interior. As a result of this situation, the
gas at the bottom of the cool outer layer is heated by the hot gas in the
interior. It undergoes expansion and rises toward the surface. Once it
reaches the surface, the hot gas loses its heat to space, cools, and descends
into the interior. The entire outer layer breaks up into ascending columns
of heated gas and descending columns of cooler gas. The region in which
this large-scale upward and downward movement of gases occurs is called
the zone of convection, which extends from a depth of about 150,000 km
to the surface of the sun. Below this depth, it is believed that energy is trans-
ported within the sun by means of electromagnetic radiation, i.e., by the
flow of photons. Near the surface, however, because of the substantial
blocking of radiant energy by the absorption of heavier elements, energy
is transferred partly by convection and partly by electromagnetic radiation.
Above the surface, energy transport is again by means of electromagnetic
radiation.

2.1.1 The Structure

The visible region of the sun is called the photosphere, where most of
the electromagnetic energy reaching the earth originates. Although the
sun is in a gaseous form, the photosphere is referred to as the surface of
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the sun. The photosphere is marked by relatively bright granules about
1500 km in diameter. The bright granules are separated by dark regions
known as faculae and variable features called sunspots. They are fairly
uniformly distributed over the solar disk, and are believed to be associated
with ascending hot gases in the uppermost layer of the zone of convection
discussed previously.

The photosphere is a comparatively thin layer about 500 km thick which
constitutes the source of the sun's visible radiation. The temperature in
this layer varies from 80000K in lower layer to 40000K in the upper layer.
By matching the theoretical Planck curve versus wavelength depicted
in Fig. 1.6 with the measured spectral radiant energy emitted by the sun,
the best agreement was found for a temperature of approximately 6000°K.
This temperature is an average over the temperature range of the photo-
sphere. The effective temperature of the photosphere also may be obtained
by measuring the luminosity of the sun. On the basis of the Stefan-Boltzmann
Law and with the knowledge that the sun's radius assumes a sharply defined
surface, the effective temperature yields a value of 5800°K. This value agrees
closely with the temperature of 60000K derived from the Planck curve.
Radiation emitted from the photosphere is essentially continuous.

The region above the photosphere is called the solar atmosphere. It is
characterized by the tenuous and transparent solar gases. The solar atmo-
sphere is divided into two regions called the chromosphere and corona.

The chromosphere lies above the photosphere to a height of approximately
5000 km. The temperature of the chromosphere increases from a minimum
of about 40000K and stays between 4000 and 60000K up to about 2000
km. Above this height, the temperature rises drastically reaching about
106°K at an altitude of about 5000 km. The layer with a minimum tempera-
ture of 40000K extends to a few thousand kilometers, consisting of relatively
cool gases lying over the hotter gases. These cool gases absorb continuous
radiation emitted from the photosphere at wavelengths characteristic of
the atoms in the sun, and generate the solar absorption spectrum. In accord
with the discussion in Section 1.3, when an atom absorbs radiant energy,
it is excited to a new energy level. The excited atom then makes a transition
to a lower excited state, or to the ground state, during which a quantum
of energy is emitted. Consequently, the emission spectrum of the chromo-
sphere is formed. Since the absorption spectrum is produced by the initial
transition of atoms from a low energy to a high energy state, while the emis-
sion spectrum results from the subsequent transition of the same atoms in
the reverse direction, it is clear that the lines in the emission spectrum are
the same as those in the sun's absorption spectrum. When the photosphere
is eclipsed by the moon or by instrument, the line emission, mostly from
hydrogen, helium, and calcium, can be observed. Because a bright line
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emission spectrum flashes into view briefly at the beginning and the end
of the period of the total eclipse, it is called the flash spectrum. The 6563
Aline of hydrogen is one of the strongest absorption lines in the solar spec-
trum. Owing to the large amount of energy emitted in this line, the chromo-
sphere becomes visible and has a characteristic reddish appearance during
an eclipse.

Above the chromosphere lies the region of the solar atmosphere called
corona. The corona layer extends out from the edge of the solar disk many
millions of kilometers. It is visible as a faint white halo during total eclipses.
Figure 2.1 illustrates the solar corona during the total eclipse of March
1970. It is generally believed that the corona has no outer boundary. A
stream of gas called solar wind flows out of the corona and into the solar
system continuously. An instrument called coronagraph has been used
frequently in the past to study the chromosphere and corona in the absence
of a natural eclipse. Strong emission lines of hydrogen and helium originating
from the chromosphere disappear with increasing altitude, and they are
replaced by the continuous spectrum of white light characteristic of the
corona. The spectrum of the corona contains a number of weak emission

Fig. 2.1 The solar corona during the total eclipse of March 7, 1970. Features are visible at a
distance of about 4.5 solar radii or 3 million kilometers (courtesy of G. Newkirk, Jr., High
Altitude Observatory, Boulder, Colorado).
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lines, among which, the most intense is the green line of ionized iron. The
generation of this emission line requires an enormous amount of energy,
and it is believed that the temperature in large regions of corona is close
to 106 0K.

2.1.2 Solar Surface Activity: Sunspots

Several observable features of the sun are particularly interesting and
important because of their transient occurrence. The best known and
largest observed of these variable features are the sunspots. Sunspots are
relatively dark regions on the photosphere-the surface of the sun. The
sunspots have an average size of about 10,000 km but range from barely
visible to areas that cover more than 150,000 km on the sun's surface. The
spots usually occur in pairs, or in complex groups, which follow a leader
spot in the direction of the sun's rotation. Small sunspots persist for several
days or a week, while the largest spots may last for several weeks, long
enough for these spots to reappear during the course of the sun's 27-day
rotation. Sunspots are almost entirely confined to the zone of latitudes
between 40° and the equator, and never appear near the poles. Sunspots
are cooler regions having an average temperature of about 4000oK, com-
pared to an average temperature of 60000K for the photosphere. Owing
to the relatively low temperature, sunspots appear black. Figure 2.2 illustrates
a large sunspot group photographed with the 100-inch telescope on Mount
Wilson.

The number of sunspots that appear on the solar disk averaged over a
period of time is highly variable. There are periods of time when the spots
are relatively numerous, while a few years later spots occur hardly at all.
These periods are called sunspot maxima and sunspot minima, respectively.
The periodic change in the sunspot number is referred to as the sunspot
cycle. For about 200 years, the number of spots appearing everyday and
the position of these spots on the face of the sun have been recorded con-
tinuously. The average length of time between sunspot maxima is about
11 years; the so-called 11-year cycle. Figure 2.3 depicts the variation of
the sunspot number since about 1730. In the years of sunspot maxima, the
sun's surface is violently disturbed, and the outbursts of particles and radia-
tion are commonly observed. During the sunspot minima period, however,
outbursts are much less frequent. These outbursts are usually observed in
the vicinity of large, complex groups of sunspots, and are called solar flares.
The burst of radiation and energetic particles from a large flare may produce
interferences with radio communications and cause substantial variations
in the earth's magnetic field.
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Fig.2.2 A large cluster of sunspots photographed with the IOO-inch telescope in 1947 at
sunspot maximum. The lower photograph is an enlarged view (courtesy of the Hale Observa-
tories, Pasadena, California).
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It is believed that sunspots are associated with the very strong magnetic
fields that exist in their interiors. Magnetic field measurements utilizing
the Zeeman effect (the splitting of a spectral line into several separate lines)
show that pairs of sunspots often have opposite magnetic polarities. For
a given sunspot cycle, the polarity of the leader spot is always the same for
a given hemisphere. With each new sunspot cycle, the polarities reverse.
The cycle of the sunspot maximum having the same polarity is referred to
as the 22-year cycle. The sunspot activities have been found to have a pro-
found influence on many geophysical phenomena and on atmospheric
processes.

2.2 THE EARTH'S ORBIT ABOUT THE SUN

The earth is one of the nine planets in the solar system. The four planets
closest to the sun, i.e., Mercury, Venus, Earth, and Mars, are referred to as
the terrestrial planets, and the remaining planets; Jupiter, Saturn, Uranus,
Neptune, and Pluto, are called the major planets. All of the planets revolve
around the sun in the same direction, and except Uranus, they also rotate
in the same direction about their axis. Except Mercury and Pluto, all the
planetary orbits lie in almost the same plane, and we call the plane of the
earth's orbit the plane of the ecliptic.

Once every 24 hours with respect to the sun, the earth makes a complete
rotation eastward about an axis through the poles. This rotation is the
cause of the most obvious of all time periods involving the alternation of
day and night, which comes about as the sun shines on the different parts
of the earth exposed to it. Meanwhile, the earth with a mass of 6 x 102 7 g,
moves eastward around the sun once in approximately 365 days. The
earth's orbit about the sun and the earth's rotation about its axis are the
most important factors determining the amount of solar radiant energy
reaching the earth, and the climate and climatic changes of the earth-atmo-
sphere system. Owing to the rotation of the earth about its axis, the earth
assumes the shape of an oblate spheroid, having equatorial and polar radii
of 6378.17 and 6356.79 km, respectively. Its orbit around the sun is an
ellipse, and the axis of its rotation is tilted as shown in Fig. 2.4.

There are three ways in which the earth's orbit about the sun varies.
The earth orbital eccentricity, defined as the ratio of the distance between
the two foci to the major axis of the ellipse, fluctuates within about 0.05
with a variable period of about 100,000 years. The mean eccentricity of
the earth's orbit is about 0.017. In reference to Fig. 2.4, the axis of the earth's
rotation is tilted at an angle of 23.5° from the normal to the plane of the
ecliptic, the inclination angle. This angle, representing the obliquity of the
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VERNAL EQUINOX

Fig. 2.4 The earth's orbit about the sun and effects of the obliquity of the ecliptic on the seasons.

ecliptic, varies cyclically over an average range of 1.50 with a period of
about 41,000 years. In addition to these two factors, there is a very slow
westward motion of the equinoctial points along the ecliptic, called pre-
cession, caused by the attraction of other planets upon the earth. Owing
to the wobbling motion, the time when the earth is closest to the sun advances
by about 25 minutes each year. Thus, the periodic precession index is about
21,000 years. Obviously, these three orbital changes affect the distribution
of the amount of solar energy on earth-atmosphere system.

In recent years, much concern has been focused on the climate and climatic
changes of the earth in view of the fact that human endeavors are parti-
cularly vulnerable to uncertainties in climate, and that human activity
may be causing climatic change even now. The cause of fluctuations in
the Pleistocene ice sheets has been a topic of scientific debates and specu-
lations. A number of external factors have been speculated to be the major
causes of the earth's climatic variations; variations in the output of the
sun, seasonal and latitudinal distribution of incoming radiation due to
the earth's orbital changes, the volcanic dust content of the atmosphere,
and the distribution of carbon dioxide between the atmosphere and ocean
are the most popular hypotheses.

The orbital theory of the climatic change proposed some years ago by
the astronomer Milankovitch (1941) increasingly has gained scientific
support in recent years. A group of climatologists (Hays et al., 1976) recently
reconstructed the climatic record of the earth. The reconstruction was based
on measurements of the oxygen isotopic composition of planktonic foramini-
fera from the deep-sea sediment cores in the southern Indian ocean, and
estimates of summer sea-surface temperatures at the core site derived from
statistical analyses of radiolarian assemblages. These deep-sea sediment
cores contain a continuous climatic record up to about 500,000 years.
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On the basis of statistical analyses, these climatologists found that (1) the
dominant 100,000-year climatic component has an average period close
to the orbital eccentricity variations; (2) the 40,000-year climatic component
has the same period as variations in the obliquity of the earth's axis; and
(3) the 23,000-year climatic variation is associated with the periodic pre-
cession index. The dashed line in the center of Fig. 2.5 shows the variation
of the estimated sea-surface temperature based on their investigation. The
dotted line depicts a plot of orbital eccentricity variations. The upper and
lower curves are the 23,000 and 40,000-year frequency components ex-
tracted from the estimated sea-surface temperature by a statistical filter
method.
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Fig.2.5 Variation in eccentricity and climate over the past 500,000 years. Dashed line in the
center shows variations in the estimated sea-surface temperature T,. Dotted line denotes the
orbital eccentricity. Upper and lower curves are the 23,000- and 40,000-year frequency com-
ponents extracted from T, based on a statistical filter method (after Hays et al., 1976, with
modification).

The most distinguishable feature of climatic changes is the seasons. The
revolution of the earth about the sun and the tilt of the earth's axis cause
the seasonal variation. At the time of the summer solstice, which occurs
about June 22, the sun appears directly overhead at noon on latitude 23.5°N,
called the Tropic of Cancer. The elevation of the sun above the horizon and
the length of the day reach their maximum values in the northern hemisphere
at the summer solstice, and everywhere north of the Arctic Circle (latitude
66'soN) the sun remains above the horizon all day. In the southern hemi-
sphere, the sun's elevation is at a minimum, the days are shortest, and every-
where south of the Antarctic Circle (latitude 66,SOS) the sun does not rise
above the horizon on the June solstice. This is the beginning of the northern
hemisphere summer, and the southern hemisphere summer begins at the
winter solstice on about December 22.
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Having reached the southermost point in its annual migration, the sun
then stands directly overhead at noon on latitude 23.5"S, called the Tropic
ofCapricorn. Both the elevation of the sun above the horizon and the length
of the day are then at their minimum values in the northern hemisphere,
and the sun does not rise within the Arctic Circle or set within the Antarctic
Circle. At the vernal (spring) and autumnal equinoxes, the days and nights
everywhere are equal (12 hours), and the sun appears directly overhead
on the equator at noon. The sun crosses the equator from north to south
at the autumnal equinox, and from south to north at the vernal equinox.

The distances between the centers of the sun and earth vary between
the extreme values 147 x 106 km at about winter solstice, and 153 x 106 km
at about summer solstice. The mean distance between the sun and earth
is about 150 x 106 km, denoted earlier in Section 2.1.

2.3 THE SOLAR SPECTRUM AND SOLAR CONSTANT

The distribution of electromagnetic radiation emitted by the sun as a
function of the wavelength incident on the top of the atmosphere is called
the solar spectrum. The solar constant S is a quantity denoting the amount
of total solar energy reaching the top of the atmosphere. It is defined as
the flux of solar energy (energy per time) across a surface of unit area normal
to the solar beam at the mean distance between the sun and earth. The
solar spectrum and solar constant have been the topics of extensive in-
vestigations for a long period of time. Abbot undertook a long series of
ground-based measurements, resulting in a value of about 1350 W m- z

for the solar constant. Subsequent to Abbot's work and prior to more re-
cent measurements carried out from high-altitude platforms, solar constant
values of 1396 and 1380 W m -2 proposed by Johnson and Nicolet, respec-
tively, were widely accepted. Recently, based on a series of measurements
from high-altitude platforms, a revised value of 1353 (± 21) W m - Z or
1.94 (± 0.03) cal em - Z min - 1 issued by the National Aeronautics and
Space Administration (NASA) has been accepted as a standard solar con-
stant (Thekaekara, 1976).

The standard solar spectrum in terms of the spectral irradiance is shown
in the top solid curve of Fig. 2.6. Also shown in this diagram is the spectral
solar irradiance reaching the sea level in a clear atmosphere. The shaded
areas represent the amount of absorption by various gases, primarily HzO,
COz, °3 , and °2 , Absorption and scattering of solar radiation in clear
atmospheres will be discussed in Chapter 3. Ifone matches the solar spectral
irradiance curve with theoretical blackbody values, we find that a tem-
perature of about 60000K fits the observed curve closely in the visible and
infrared wavelengths. The reader is invited to carry out this exercise [Ex-
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ercise (2.1)]. As has been pointed out in Section 2.1, most of the electro-
magnetic energy reaching the earth originates from the sun's surface-the
photosphere. Of the electromagnetic energy emitted from the sun, approx-
imately 50% lies in wavelengths longer than the visible region, about 40%
in the visible region (0.4-0.7 Jim), and about 10% in wavelengths shorter
than the visible.

According to solar flux observations, the ultraviolet region «0.4 Jim)
of the solar spectrum deviates greatly from the visible and infrared regions
in terms of the equivalent blackbody temperature of the sun. Figure 2.7
illustrates a detailed observed solar spectrum from about 0.1 to 0.4 Jim,
along with blackbody temperatures of 4500, 5000, 5500, and 6000oK. In
the ultraviolet region, wavelength units used are normally in angstroms
(A); 1A = 10- 4 Jim. In the interval 2100-2600 A, the equivalent blackbody
temperature of the sun lies somewhat above 5000oK. It falls gradually to
a minimum level of about 47000K at about 1400 A. From there toward
shorter wavelengths, a large amount of energy flux is observed at the Lyman
IX emission line of 1216 A associated with the transition of the first excited
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and ground states of hydrogen atoms. The ultraviolet portion of the solar
spectrum below 0.3 f.lm contains a relatively small amount of energy.
However, because the ozone, and the molecular and atomic oxygen and
nitrogen in the upper atmosphere absorb all this energy, it represents the
prime source for the energetics of the atmosphere above 10 km.

The sun emits energy at the rate of 6.2 x 107 W m- 2
, or 9.0 x 104 cal

min - 1 em - 2. On the basis of the energy conservation principle, the energy
emitted from the sun must remain the same at some distance away from the
sun. Thus,

F4na; = S4nd;, (2.1)

where F denotes the solar emittance, as the radius of the sun, and dm the mean
distance between the sun and earth. Hence, the solar constant may be
expressed by

(2.2)

The total energy intercepted by the earth whose radius is a; is given by Sna;.
If this energy is spread uniformly over the full surface of the earth, then the
amount received per unit area and unit time at the top of the atmosphere is
given by

(2.3)

To estimate the effective temperature T of the sun we assume that the sun
is a blackbody. Thus, by virtue of the Stefan-Boltzmann law, i.e., F = (JT4

,

we find

T 4 = (dm/as?(S/o} (2.4)

Inserting values of S, (J, dm, and as into Eq. (2.4), we obtain an effective
temperature of about 58000K for the sun.

2.4 DETERMINATIONS OF THE SOLAR CONSTANT

There are two techniques of measuring the solar constant from the ground-
based radiometer, called the long and short methods of the Smithsonian
Institution. The long method is more fundamental and establishes the basis
for the short method.

Observations of solar energy for the purpose of determining the solar
constant require three primary instruments. These are the pyrheliometer, the
pyranometer, and the spectrobolometer. The pyrheliometer was used to
measure the direct plus some diffuse solar radiation, while the pyranometer
measured only the diffuse solar radiation for arriving at a pyrheliometer
correction utilizing a suitable shield to block the direct solar radiation from
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striking the instrument. The amount of the direct sunlight then can be evalu-
ated by subtracting the flux density measured by the pyranometer from that
by the pyrheliometer. The spectrobolometer is a combination of a spectro-
graph and a coelostat. The coelostat is a mirror which follows the sun and
focuses its rays continuously on the entrance slit of the spectrograph, which
disperses the solar radiation into different wavelengths by means of a prism
or diffraction grating. In the Smithsonian solar constant measurements,
about 40 standard wavelengths between 0.34 and 2.5/lm are measured nearly
simultaneously from the record of the spectrograph. The instrument corres-
ponding to these measurements is called bologram.

2.4.1 Long Method

Assume that the atmosphere consists of plane parallel layers. At a given
sun's position, which is denoted by the solar zenith angle eo, the effective
path length of the air mass is u sec eo, where

u = roo p dz. (2.5)JZl
In this equation, 2 1 is the height of the station. On the basis of the Beer-
Bouguer-Lambert law, the irradiance F of the direct solar radiation of
wavelength A observed at the surface level is given by

(2.6)

where FlO is the monochromatic solar irradiance at the top of the atmosphere,
k l denotes the monochromatic mass extinction cross section'!Yl is the mono-
chromatic transmissivity defined in Eq. (1.51),and m( =sec eo) represents the
ratio of the air mass between the sun and observer and that at the local zenith
distance. Upon taking the logarithm, we find

ln F, = In FlO + mln!Yl · (2.7)

Observations of F l may be made for several zenith angles during a single
day. If the atmospheric properties do not change during the observational
period, then the transmissivity !Yl is constant. A plot of F 1 versus m shown
in Fig. 2.8 may be extrapolated to the zero point, which represents the top
of the atmosphere (m = 0). If observations of the monochromatic irradiance
are carried out for wavelengths covering the entire solar spectrum, then from
Eq. (2.6)we have

(2.8)

where N is the total number of the monochromatic irradiance measured. Let
d denote the actual distance between the earth and the sun, then from the
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Fig. 2.8 Hypothetical observed monochromatic solar irradiances FA as a function of the
effective path length.

energy conservation principle the solar constant is simply given by

(2.9)

The foregoing outlines theoretical procedures of the Smithsonian long
method for the determination of the solar constant. However, as illustrated
in Fig. 2.6, the atmosphere is essentially opaque for wavelengths shorter than
about 0.34 ,urn, and for wavelengths longer than about 2.5 ,urn. Consequently,
flux density observations cannot be made in these regions. Therefore empiri-
cal corrections are needed for the omitted ranges, which account for about
8% of the solar flux.

There are sources of error inherent in the Smithsonian long method caused
by (1) empirical corrections for absorption of ultraviolet by ozone, and
absorption of infrared by water vapor and carbon dioxide in the wings of the
solar spectrum; (2)an unknown amount of diffuse radiation entering the aper-
ture of the observing instrument; (3) variations of kA and the possible effects
of aerosols during a series of measurements, and (4) measurement errors.
Therefore, in spite of very careful evaluations and observations, a certain
amount of error is inevitable.

Employing the Smithsonian long method, each determination requires
about two to three hours of observational time plus twice that much time for
the data reduction. In addition, there is no assurance that atmospheric pro-
perties and solar conditions remain unchanged in a consistent manner during
the observational period. Because of this uncertainty and the burdensome,
time-consuming work, a short method was devised to determine the solar
constant.
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2.4.2 Short Method

2 Solar Radiation at the Top of the Atmosphere

In the short method, the diffuse component of solar radiation (the sky
brightness) has been measured for a given locality over a long period oftime,
so that a mean diffuse intensity has been determined. Thus, a pyranometer
reading of the diffuse solar radiation will differ from the mean by an amount
8, called the pyranometer excess. In reference to Section 1.1.4 and Fig. 2.6,
the attenuation of solar radiation in a clear day is due to scattering by mole-
cules and aerosol particles, and absorption by various gases, primarily, the
water vapor. Ifthe total precipitable water is given by w, an empirical relation-
ship between the attenuation of the direct solar irradiance and the scattering
and absorption effects may be expressed in the form

(2.10)

where ql is a constant empirically determined for each wavelength for a given
locality. With ql known, the spectral value of the solar irradiance can be
found from the observed precipitable water and a pyranometer reading.

On the basis of a long series of previous observations of Fl , m, and g-l at
a given location where the solar constant measurement has been made, a
graph of F" versus air mass m has been constructed for a set value of g-k Thus,
for a particular measurement of F1 with a known air mass m, the corres-
ponding transmissivity g-l can be found from the graph. Once .'Y" has been
determined, the solar irradiance at the top of the atmosphere F 0" may be
evaluated through Eq. (2.6). After this point, evaluation of the solar constant
proceeds in the same manner as in the long method. In the short method, the
required measurements include a bologram of the sun, an observation of the
sky brightness by the pyranometer, and the air mass determined by the posi-
tion of the sun from a theodolite. These three measurements take only about
10 to 15 minutes.

From thousands of observations at various locations over the world during
a period of more than a half century, the best value of the solar constant
determined by the Smithsonian methods is 1.94 cal em - 2 min -1 (1353
W m - 2).It is interesting to note that this is the same value recently accepted
as standard value for the solar constant.

A number of measurements have also been made in the upper atmosphere
and outer space to minimize atmospheric effects in solar constant determina-
tions. These observations included balloons floating in the 27-35-km altitude
range, jet aircraft at about 12 krn, the X-IS rocket aircraft at 82 km, and the
Mars Mariner VI and VII spacecrafts entirely outside the atmosphere. The
solar constant derived from these experiments ranges from about 1.92 to
1.95 em - 2 min -1. A standard value for the solar constant recently adopted
by NASA is 1.94 ± 0.03 cal em - 2 min - 1 as indicated previously.
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More recently, measurements of the incoming solar irradiance also have
been made from the satellite platform. The earth radiation budget (ERB)
experiment including the solar constant determination was launched into a
circular sun-synchronous earth-orbit aboard the Nimbus VI and Nimbus vn
statellites in June 1975 and October 1978, respectively (see Appendix H).
In the ERB experiment, the incoming solar radiation is observed with an
array of 10 telescopes which measure the total solar irradiance and spectral
irradiances contained within various broad and narrow subdivisions of the
solar spectrum. One of the objectives of the ERB experiment has been to
monitor continuously the solar radiation input to the earth-atmosphere
system and to investigate the possible variability of the solar constant. Values
1391 and 1368 W m- 2 have been cited for the solar constant during the
1975-1977 period (Jacobowitz et al., 1979).

2.5 DISTRIBUTION OF ISOLATION OUTSIDE
THE ATMOSPHERE

Insolation is defined as the flux of solar radiation per unit horizontal area.
It depends strongly on the solar zenith angie and to some extent on the vari-
able distance of the earth from the sun. The flux density at the top of the
atmosphere may be expressed by

(2.11)

(2.13)

where F0 represents the solar flux density at the top of the atmosphere when
the instantaneous distance between the earth and sun is d, and eodenotes the
solar zenith angle. From Eq. (2.9), we find

F = S(dm/d?coseo. (2.12)

Define the solar heating received at the top of the atmosphere per unit
area as Q, then the solar flux density may be written as

F = dQ
dt

Thus, the insolation for a given period of time is

Q = 1F(t)dt. (2.14)

The total solar energy received on an unit area per one day may be evaluated
by integrating over the daylight hours. Upon substituting Eq. (2.12) into
(2.14), we find the daily insolation as follows:

(dm)21sunsetQ = S -d . cos eo(t)dt.
sunnse

(2.15)
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The solar zenith angle is normally determined from other angles that are
known. In reference to Fig. 2.9, let P be the point of observation and OZ the
zenith through this point. Assume that the sun is in the direction OS or PS
and let D be the point directly under the sun. Then the plane of OZ and OS
will intersect the surface of the earth in a great circle. The angle ZOS, mea-
sured by the arc PD of this circle, is equal to the sun's zenith distance ()o. In
the spherical triangle NPD, the arc ND is equal to 90° minus the solar
inclination 0 which is the angular distance of the sun north (positive) or
south (negative) of the equator. The arc NP is equal to 90° minus the latitude
A of the observation point, and the angle h is the hour angle, or the angle
through which the earth must turn to bring the meridian of P directly under
the sun. From the spherical trigonometry, the cosine of the solar zenith angle
as given in Appendix F is

cos()o = sin x sin »+ cos t cos acos s. (2.16)

(2.17)

The solar inclination is a function of day of year only, and is independent of
the location of the observation point. It varies from 23°27' on June 21 to
- 23°27' on December 22. The hour angle is zero at solar noon, and increases
by 15° for every hour before or after solar noon.

Upon inserting Eq. (2.16) into Eq. (2.15)and denoting the angular velocity
of the earth co by dhjdt(= 2nradjday), Eq. (2.15) yields the form

�( �~ �) �2 �J �H . �~Q = S d -8 (slllAsino + cos x cos d cos s) 7;;'

w o

N Local zenith

Z

s

S
Fig. 2.9 Relationship of the solar zenith angle lia to the latitude A, the solar inclination angle
<5, and the hour angle h. The 4> here denotes the azimuthal angle of the sun from the south.
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where H represents the half-day, i.e., from sunrise or sunset to solar noon.
After performing the simple integration we get

Q = �~ �(�~�mY(sin AsinoH + cod cos 0 sin H). (2.18)

In Eq. (2.18), H in the first term on the right is expressed in units of radians
(1800 = tt rad). Note that the factor (dm/d)2 never departs by more than 3.5%
from unity. It ranges from 1.0344 on January 3 to 0.9674 on July 5.

Equation (2.18) allows us to calculate the distribution of the daily solar
energy per unit area over the top of the global atmosphere as functions of
latitude and day of year. The results are shown in Fig. 2.1O. Since the sun is

JAN FEB MAR APRIL MAY JUNE JULY AUG SEPT OCT NOV DEC

90°

80°

70°

60°

50°

40°

30°

20 0

l.IJ
C 100

::::>
r- Oo-r-
« _10°
-J

_20 0

_30 0

_40 0

_50 0

_60 0

_70°

_80°

_900

\
�~�l

JAN FEB MAR APRIL MAY JUNE JULY AUG SEPT OCT NOV DEC

MONTH
Fig. 2.10 The daily variation of insolation at the top of the atmosphere as a function oflatitude
and day of year in units of cal ern"? day-l (after List, 1958).



48 2 Solar Radiation at the Top of the Atmosphere

closest to the earth in January (northern hemisphere winter), the distribution
of solar energy is slightly asymmetric, and the maximum radiation received
in the southern hemisphere is greater than that received in the northern
hemisphere. Note that the maximum insolation occurs at summer or winter
solstice at either pole owing to the long solar day (24 hours). It should also be
noted that after integrating Eq. (2.17)for a period of one year the total annual
insolation is the same for the corresponding latitudes in northern and
southern hemispheres.

EXERCISES

2.1 By matching the observed solar irradiance curve depicted in Fig. 2.6,
show that the sun may be considered as a blackbody in the visible and near
infrared wavelengths.

2.2 Given the solar constant 1.94 cal em - 2 min -1, the mean earth-sun
distance 150 x 106 km, and the sun's radius 0.70 x 106 km, calculate the
equilibrium temperature of the sun.

2.3 lfthe average output of the sun is 6.2 x 107 W m - 2, and the radius
of the earth is 6.37 x 103 km, what would be the total amount of energy
intercepted by the earth in one day?

2.4 Compute the fraction of the emittance that the earth intercepts from
the sun.

2.5 Consider a circular cloud whose diameter is 2 km and assume that
it is an infinitely thin blackbody with a temperature of 10°e. How much
energy does it emit toward the earth? How much energy from this cloud is
detected on a square centimeter of the earth's surface when the center of the
cloud is I km directly over the receiving surface?

2.6 On a clear day, measurements of the direct solar flux density F at the
earth's surface in the 1.5- to 1.6-,um-wavelength interval give the following
values:

Zenith angle (degree): 40° 50° 60° 70°
F(cal em"? min-i): 0.020 0.018 0.015 0.011

Find the solar flux density at the top of the atmosphere and the transmissivity
of the atmosphere for normal incidence [see Eq. (1.51)] in this wavelength
interval.

2.7 Assume thatr is the mean albedo of the earth (albedo is defined as the
ratio of the amount of flux reflected to space to the incoming solar flux),
and that the earth-atmosphere system is in equilibrium for a long period
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of time. Show that the equilibrium temperature of the earth-atmosphere
system T = [(1 - r)S/4<T]1 /4

2.8 The following table gives the distances of various planets from the
sun and their albedos. Employing the result in Exercise 2.7, compute the
equilibrium temperatures of these planets.

Distance from sun Albedo
Planet (relative to earth) (%)

Mercury 0.39 6
Venus 0.72 78
Earth 1.00 30
Mars 1.52 17
Jupiter 5.20 45

2.9 The height of the earth-synchronous (geostationary) orbiting satellites,
such as GOES satellites, is about 35,000 km. Using the solid angle derived
from Exercise 1.2, calculate the equilibrium temperature of the satellite in
the earth-satellite system, assuming an effective equilibrium temperature of
255°K for the earth and assuming the satellite is a blackbody.

2.10 Show that the change in the earth's equilibrium temperature T; in
terms of the earth-sun distance d is given by bTelTe = - ()d12d. The distance
between the earth and the sun varies by about 3.3% with a maximum and
minimum on January 3 and July 5, respectively. Compute the seasonal
change in the earth's equilibrium temperature.

2.11 Calculate the daily insolation on the top of the atmosphere at (a) the
south pole in the winter solstice, and (b) the equator in the vernal equinox.
Use the mean earth-sun distance in your calculations and check your values
with those shown in Fig. 2.10.

2.12 Compute the solar elevation angle at solar noon at the poles, 600N(S),

300N(S), and the equator. Also compute the length of the day (in terms of
hours) at the equator and at 45°N in the equinox and solstice.
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Chapter 3
ABSORPTION AND SCATTERING
OF SOLAR RADIATION IN
THE ATMOSPHERE

3.1 COMPOSITION AND STRUCTURE OF
THE EARTH'S ATMOSPHERE

To describe the interaction of the earth's atmosphere with solar radiation,
it is essential that the atmosphere's composition is understood. The atmo-
sphere is composed of a group of nearly permanent gases and a group of gases
with variable concentration. In addition, the atmosphere also contains
various solid and liquid particles such as aerosols, water drops, and ice
crystals, which are highly variable in space and time.

Table 3.1 lists the chemical formula and volume ratio for the concentrations
of the permanent and variable gases in the earth's atmosphere. It is apparent
from this table that nitrogen, oxygen, and argon account for more than
99.99% of the permanent gases. These gases have virtually constant volume
ratios up to an altitude of about 60 km in the atmosphere. It should be noted
that although carbon dioxide is listed here as a permanent constituent, its
concentration varies as a result of the combustion of fossil fuels, absorption
and release by the ocean, and photosynthesis. The climatic impact of the
increase of carbon dioxide content in the earth's atmosphere will be discussed
in Section 4.9. Water vapor concentration varies greatly both in space and
time depending upon the atmospheric condition. Its variation is extremely

50
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TABLE 3.1 The Composition of the Atmosphere"

Permanent constituents

51

Variable constituents

Constituent

Nitrogen (N ,)
Oxygen (02)
Argon (Ar)
Carbon dioxide (C0 2)
Neon (Ne)
Helium (He)
Krypton (Kr)
Xenon (Xe)
Hydrogen (H 2 )

Methane (CH 4 )

Nitrous oxide (N 2 0 )b
Carbon monoxide (CO)b

% by volume

78.084
20.948

0.934
0.033

18.18 x 10- 4

5.24 X 10- 4

1.14 X 10- 4

0.089 X 10- 4

0.5 X 10- 4

1.5 X 10- 4

0.27 X 10- 4

0.19 X 10- 4

Constituent

Water vapor (H 20)
Ozone (0 3)

Sulfur dioxide (S02)b
Nitrogen dioxide (NO,)b
Ammonia (NH 3)b

Nitric oxide (NO)b
Hydrogen sulfide (H,St
Nitric acid vapor (HN0 3)

%by volume

0-0.04
0-12 x 10- 4

0.001 X 10- 4

0.001 X 10- 4

0.004 X 10- 4

0.0005 X 10- 4

0.00005 x 10- 4

Trace

a After the U.S. Standard Atmosphere, 1976.
b Concentration near the earth's surface.

important in the radiative absorption and emISSIOn processes as will be
evident in this chapter and the next. Ozone concentration also changes with
respect to time and space, and it occurs principally in altitudes from about
15 to about 30 km, where it is both produced and destroyed by photochemi-
cal reactions. Most of the ultraviolet radiation is absorbed by ozone, pre-
venting this harmful radiation from reaching the earth's surface. In the next
two sections, we will discuss photochemical processes involving ozone. The
remaining gases along with several trace gases not listed in the table, enter
into many types of reactions with the other gases and particles, and are found
in the atmosphere in variable concentration.

All of the gases listed in the table are responsible for the scattering of
sunlight and the consequent polarization characteristics. These subjects will
also be discussed in this chapter. Finally, we note that the variable solid and
liquid particles suspended in the atmosphere play an important role in
absorption and scattering of solar radiation, and in the physics of clouds and
precipitation.

The vertical temperature profile for the standard atmosphere is depicted
in Fig. 3.1. This profile represents typical conditions in middle latitudes.
According to the standard nomenclature defined by the International Union
of Geodesy and Geophysics (IUGG) in 1960, the vertical profile is divided
into four distinct layers as shown in Fig. 3.1. These are the troposphere,
stratosphere, mesosphere, and thermosphere. The tops of these layers are re-
spectively called the tropopause, stratopause, mesopause, and thermopause.
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Fig. 3.1 Vertical temperature profile after the U.S. Standard Atmosphere (1976).

The troposphere is characterized by a decrease oftemperature with respect
to height with a typical lapse rate of 6SC/km. The temperature structure in
this layer is a consequence of the radiative balance and the convective trans-
port of energy from the surface to the atmosphere. Virtually all the water
vapor, cloud, and precipitation are confined in this layer. The stratosphere is
characterized by an isothermal layer from the tropopause to about 20 km
from where the temperature increases to the stratopause. Ozone occurs
chiefly in the stratosphere. In addition, thin layers of aerosol are observed to
persist for a long period of time within certain altitude ranges of the strato-
sphere. Like the troposphere the temperatures in the mesosphere decrease
with height from about 50 to about 85 km. Above 85 km and extending
upward to an altitude of several hundred kilometers lies the thermosphere
where temperatures range from 5000K to as high as 2000oK. The outermost
region of the atmosphere above the thermosphere is called the exosphere. The
term upper atmosphere generally is defined as the region of the atmosphere
above the troposphere. As will be discussed in Chapter 4, the temperature
distribution is the major factor in determining the transfer of thermal infrared
radiation in the atmosphere.
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Before we proceed to discuss the absorption of solar radiation in the
ultraviolet and near infrared regions, it would be helpful to introduce the
ways in which a molecule can store various energies. Any moving particle
has kinetic energy as a result of its motion in space. This is known as trans-
lational energy. The averaged translational kinetic energy of a single molecule
in the X, Y, and Z directions is found to be equal to KT/2, where K is the
Boltzmann constant and T is the absolute temperature. The molecule which
is composed of atoms can rotate, or revolve, about an axis through its center
of gravity and, therefore, has rotational energy. The atoms of the molecule
are bounded by certain forces in which the individual atoms can vibrate
about their equilibrium positions relative to one another. The molecule
therefore will have vibrational energy. These three molecular energy types are
based on a rather mechanical model of the molecule that ignores the detailed
structure of the molecule in terms of nuclei and electrons. It is possible, how-
ever, for the energy of a molecule to change due to a change in the energy state
of the electrons of which it is composed. Thus, the molecule has electronic
energy. The last three energy types are quantized and take discrete values
only. As we have pointed out in Section 1.3, absorption and emission of
radiation takes place when the atoms or molecules undergo transitions from
one energy state to another. In general, these transitions are governed by
selection rules. Atoms can exhibit line spectra associated with electronic
energy. Molecules, however, can have two additional types of energy which
lead to complex band systems.

Solar radiation is mainly absorbed in the atmosphere by 0z, 03' N z, COz,
HzO, 0, and N, although NO, NzO, CO, and CH 4 , which occur in very small
quantities, also exhibit absorption spectra. Absorption spectra due to
electronic transitions of molecular and atomic oxygen and nitrogen, and
ozone occur chiefly in the ultraviolet (UV) region, while those due to the
vibrational and rotational transitions of triatomic molecules such as HzO,
03, and COz lie in the infrared region. There is very little absorption in the
visible region of the solar spectrum. Most of the UV radiation is absorbed in
the upper atmosphere by oxygen and nitrogen species. The UV absorption
spectrum of molecular oxygen begins at about 2600 Aand continues down to
shorter wavelengths. The bands between 2600 and 2000 A, referred to as the
Herzberg bands, are very weak and of little importance in the absorption of
solar radiation owing to their overlap with the much stronger ozone bands
in this spectral region. Nevertheless, the Herzberg bands are considered to
be of significance in the formation of ozone. Adjacent to the Herzberg bands
are the very strong Schumann-Runge band system and continuum which



54 3 Absorption and Scattering of Solar Radiation

begins at 2000 A and continues down to about 1250 A. Also several bands
exist between 1250 and 1000 A. Of particular interest is the Lyman tx line at
1216 A, which is very strong in the solar spectrum. It lies in one ofthe windows
of the °z absorption spectrum. The region below 1000 A is occupied by the
very strong Oz bands, referred to as the Hopfield bands.

The absorption spectrum of molecular nitrogen begins at 1450 A. The
regions from 1450 to 1000 A are called Lyman-Birqe-Hopfield bands, and
consist of narrow and sharp lines. From 1000 to 800 A, the absorption
spectrum of N z is occupied by the Tanaka-Worley bands. They are very
complicated and absorption coefficients are highly variable. Below 800 A, the
absorption spectrum of N 2 is generally made up of the ionization continuum.
Ionization is a process in which an electron is removed from its orbit. In the
ionization process the atom or molecule may absorb more than the minimum
energy required to remove the electron. This additional energy is not quan-
tized. As a result the absorption is not selective but is continuous. The ioniza-
tion contiuum occurs on the high frequency (shorter wavelength) side of the
ionization frequency.

Because of the absorption of solar UV radiation, some of the oxygen and
nitrogen molecules in the upper atmosphere undergo photochemical
dissociation and are dissociated into atomic oxygen and nitrogen. Atomic
nitrogen exhibits absorption spectrum from about 10 to about 1000 A.
Although atomic nitrogen probably is not abundant enough to be a signifi-
cant absorber in the upper atmosphere, it may play an important role in the
absorption of UV radiation in the thermosphere. Atomic oxygen also shows
absorption continuum in the region of 10 to 1000 A. Owing to the absorption
of solar UV radiation, a portion of molecular and atomic oxygen and nitrogen
becomes ionized. The ionized layers in the upper atmosphere are formed
mainly as a result of these processes.

Of the principal constituents of the upper atmosphere, only Oz weakly
absorbs between 2000 and 3000 A. This part of the solar spectrum primarily
is absorbed by the ozone in the upper stratosphere and mesosphere. The
regions which consist of the strongest absorption bands of 0 3 are called
Hartley bands. The bands between 3000 and 3600 A are called Huggins bands,
which are not as strong as Hartley bands. 0 3 also shows weak absorption
bands in the visible and near infrared regions from about 4400 to 11,800 A,
called Chappuis bands.

The absorption cross sections of Oj , N,, 0, N, and 0 3 have been measured
by many workers and they are displayed in Fig. 3.2. The curves illustrated in
this figure are intended to indicate the relative significance of various ab-
sorbers and should not be taken as a source of quantitative data. (For the
original references of these data, see Craig, 1965.) Note that the absorption
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cross section (J (in units of cm'] is related to the absorption coefficient k (in
units of (cm-atm)-l) through the Loschrnidt's number No (2.687 x 101 9

particles em - 3 at the standard temperature, ooe, and the standard pressure,
1013 mb); i.e., k = (IN o- Both (J and k frequently are used in the field of upper
atmosphere.

To illustrate the relative absorption effects of Oj , N',, 0, N, and 03, shown
in Fig. 3.3 is the reduction of solar flux density when it penetrates the at-
mosphere. In this figure, the curve represents the decrease of the flux density
of solar radiation at the normal incidence by a factor of e (2.71828); i.e.,
In(FIF0) = 1. For example, the solar flux density F 0 at 1600 Awavelength is
reduced by a factor of2.71828 when it reaches about 110 km. The figure also
shows the variation of the atmospheric transparency below about 3000 A.
From 3000 to 2000 Athe absorption is primarily due to °3 , O 2 is responsible
for absorption between about 2000 and 850 A. Below 850 A, 0z, 0, Nz, and
N are responsible for the absorption of solar radiation. The absorption of
solar UV radiation represents the prime source for the energetics and dy-
namics of the upper atmosphere.
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3.3 PHOTOCHEMICAL PROCESSES AND
THE FORMATION OF OZONE LAYERS

Owing to the absorption spectrum of various molecules and atoms in the
solar UV region, a great variety of photochemical processes take place in the
upper atmosphere. Those involving various forms of oxygen are important
in determining the amount of ozone in the stratosphere. The classical photo-
chemistry of the upper atmosphere concerning the ozone problem was first
postulated by Chapman (1930) in which five basic reactions were proposed:

Ozone is basically formed by the three-body collision

(3.1)

where M is any third atom or molecule, and K 1 2 is the rate coefficient
involving °and °2 , Atomic oxygen is produced when the oxygen molecule
is dissociated by a quantum of solar energy:

O 2 + hv(Jc < 2423 A) -.:!4°+ 0, (3.2)

where J 2 is the dissociating quanta per molecule absorbed by °2 , Ozone is
destroyed both by photodissociation

0 3 + hv(}. < 11,000 A) �~ ° + O 2 (3.3)
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and also by collision with oxygen atoms
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(3.4)

where 1 3 is the dissociating quanta per molecule absorbed by 03, and K 13

denotes the rate coefficient involving 0 3 and 0. Meanwhile, oxygen atoms
generated by reactions (3.2) and (3.3) may undergo three-body collision,

o +0+ �M�~�0�2�+ M, (3.5)

with K II denoting the rate coefficient involving ° and 0. Normally, reac-
tion (3.5) may be neglected below 50 to 60 km.

The preceding five reactions take place simultaneously. The number of
ozone molecules formed exactly equals the number destroyed in unit volume
and time, and the process reaches an equilibrium state. To evaluate the
equilibrium amount of ozone, let [OJ, [02J, [03J, and [MJ be the number
densities, respectively, for 0, 02, °3, and air molecules. Then the photo-
chemical processes given by Eqs. (3.1)-(3.5) may be expressed in terms of
the rate of change of the number density of 0,02, and 0 3 in the following
forms:

�a�~�~�J = -K I2[OJ [0 2] [MJ + 2[02J12 - K 13[0][03]

+ [03J13 - 2K ll[0] [0] [MJ, (3.6)

a[02J---at= -K12[OJ [02J [MJ - [02]12 + 2K 13[OJ[03J

+ [03J13 + K ll[O][O][MJ, (3.7)

a[03J---at = K 12[O] [02] [M] - K 13[OJ[03] - [03J13, (3.8)

with

(3.9)

(3.10)

where Fi 00) denotes the monochromatic solar flux at the outer edge of the
atmosphere in quanta (cm -2 sec-I em -I), k;.. is the absorption cross section
(em") per molecule, and :Y;.. is the non dimensional transmissivity given by
Eq. (1.51) for the atmosphere above the volume under consideration in the
direction toward the sun. Thus the transmissivity depends upon the solar
zenith angle.

Under the assumption of photochemical equilibrium, a[O]/at =
a[02J/at = a[03J/at = O. Thus, three homogeneous equations are obtained.
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Further, to a good approximation the values of [02J and [MJ in Eqs. (3.6)
and (3.8) may be considered to be constant. It follows that the equilibrium
values of [OJ and [03J can be evaluated from Eqs. (3.6) and (3.8). In order
to make numerical computations, it is necessary to specify the atmospheric
density and temperature as a function of altitude, the solar zenith angle,
the solar flux at the outer edge of the atmosphere, the oxygen and ozone
absorption coefficients, and the rate coefficients.

Figure 3.4 depicts the equilibrium ozone concentration from the classical
theory. In the same diagram, the observational range in ozone number
densities (shaded area) is also shown. It is seen that the classical theory
overestimates the ozone number densities at almost all heights. The total
ozone in an atmospheric column from theoretical calculations exceeds the
observed values by as much as a factor ofthree or four. Obviously, additional
loss mechanisms are required to explain the observed data.

Classical theory
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Fig. 3.4 Observational range in ozone number densities (shaded area) and theoretical cal-
culations for equilibrium ozone number densities (after Leovy, 1969; see text for further
explanation).

In addition to the photodissociation and collision described previously,
the catalytic destruction reactions of ozone have been found to be

0+ xo ------> x + O 2 ,

(3.11)

(3.12)

(3.13)
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where X may be nitric oxide (NO), chlorine (Cl), hydroxyl radical (OH), or
atomic hydrogen (H). The net results of these reactions are 20 3 + hii = 30z-

The possible sources of NO and OH are produced through the following
reactions:

0 3 + hvV < 3100 A) �~ O('D) + O 2 ,

O('D) + M �~�O + M,

O('D) + N 2 0 �~ 2NO,

O('D) + H 20 �~ 20H,

(3.14)

(3.15)

(3.16)

(3.17)

where OeD) denotes the excited atomic oxygen in the 1D state, which is
essential to these reactions. It is clear that the high concentration of ozone
from Chapman's theoretical prediction is due to the neglect of these addi-
tional loss mechanisms and possibly others. By introducing reactions in-
volving (3.11)-(3.17), the calculated equilibrium ozone concentration labeled
as the modified theory is shown in Fig. 3.4 [after Leovy (1969)]. The results
from the modified theory appear to match closely with the observed values.
However, because of uncertainties on a number of reaction and dissociation
rates and the dynamics involved in the ozone formation, the ozone problem
is still an area of active research.

Ozone is a natural trace ingredient of the atmosphere that occurs at an
average concentration of about 3 parts per million by volume. Its concentra-
tion varies with seasons and latitudes. High intensities of the UV radiation
shorter than 3200 A, which are harmful to nearly all forms of life, are largely
( �~ 99%) screened out by ozone. Generally it has been agreed that the surface
life on the earth did not evolve until after the ozone layer was formed. But
the effect of small increases in intensity of ultraviolet radiation due to the
reduction of ozone by human activities is still a subject of speculations and
scientific debates.

In recent years, it has been speculated that NO and Cl may be increasing
due to the industralization of human society. Supersonic transports, aerosol
sprays, and nuclear weapons are all probable examples of technological
ability carried to excess. The catalytic agents are oxides of nitrogen released
into the upper atmosphere by the jet engines of supersonic transports and by
nuclear explosions, and the free chlorine derived photolytically from aerosol
spray cans (CFCl 3) and refrigerant (CFzClz). Additional oxides of nitrogen
also may be produced by the increased use of fixed nitrogen as fertilizer. It
seems apparent that the addition of NO and Cl might reduce the ozone
concentration in the stratosphere. The yet-to-be-solved problem of the in-
fluence of man's expanding industrial and agricultural activities has become
a political, economic, and scientific issue which has aroused worldwide
interest and concern.
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3.4 ABSORPTION IN THE VISIBLE AND INFRARED

The solar spectrum recorded with a low-resolution spectrometer has been
shown in Fig. 2.6 in which shaded areas represent the absorption of solar
flux by various minor gases in the atmosphere. Molecular oxygen absorbs
UV radiation as discussed in the previous section. In addition, it also is found
to have two weak bands in the red region of the solar spectrum. The A band
of Oz at 0.7 ,um is particularly well known because of the large solar flux
contained in this region. The A band also has led to the discovery of the
isotopes 180 and 170.

Absorption bands in the solar near-infrared region chiefly are due to
vibrational and rotational transitions. The most important absorber in the
near infrared as evident in Fig. 2.6 is water vapor. Carbon dioxide also has
weak absorption bands in the solar spectrum, however, the most important
band is the one which overlaps with the water vapor 2.7 ,um band. There are
other minor gases, such as CO, CH 4 , NzO, which also absorb solar infrared
radiation. However, the absorption by these gases is insignificant so far as the
heat budget of the earth-atmosphere is concerned. In reference to Fig. 2.6
we note that the only significant amount of solar flux lies in wavelengths
shorter than about 4 ,um.

Water vapor absorbs solar radiation in the vibrational-rotational bands.
The absorption bands centered at 0.94, 1.1, 1.38, and 1.87 ,um shown in
Fig. 2.6 are commonly identified in groups by Greek letters (p, (J, c), ¢, ljJ, and
Q, respectively. These bands arise from ground-state transitions and are
called overtone and combination bands. Although the band at 2.7 ,um is most
important, the weaker band at 3.2,um and the overtone and combination
bands also contribute significantly in the absorption. The strong 6.3 ,um band,
to be discussed in Chapter 4, is very important in the thermal infrared region.
However, since the band contains very little solar energy, its absorption in
the solar spectrum may be ignored.

Carbon dioxide exhibits a number of weak absorption bands in the solar
spectrum. The 2.0, 1.6, and 1.4 ,um COz bands are so weak that for all prac-
tical purposes they can be ignored in solar absorption calculations. The
2.7 ,umband ofCOz, which overlaps with the 2.7 ,umband of water vapor, is
somewhat stronger and should be included in absorption calculations. The
4.3 ,um band of COz is more important in the thermal infrared region than
the solar region because this band contains very little solar energy.

These absorption bands consist of lines whose intensity varies greatly with
the wave number so that the transmissivity cannot be described by the
Beer-Bouguer-Lambert law employing an exponential function of the gas-
eous optical path. Because of the uncertainities on the theoretical knowledge
of the line position and intensity, the absorption characteristics of these
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absorption bands in the solar spectrum have been determined in detail by
means of laboratory measurements.

Howard et al. (1956) measured the total absorption SAvdv for water vapor
and carbon dioxide bands under simulated atmospheric conditions. For
small values of total absorption, the formula

A = fAc dv = CU
1/ 2(p + e)\ A < A c ' (3.18)

was derived, whereas for large values of total absorption, the empirical
equation is given by

A = f Acdv = C + Dlogu + Klog(P + e), (3.19)

In these two equations, v represents wave number (em -1); A the band area
in wave number (em - 1); A v the fractional absorption within the band at v;
u the absorbing path (g em -2 for H 20; cm-atm for CO2) ; e the partial
pressure of absorbing gases (mm Hg; note that 760 mm Hg = 1013 mb,
1 mb = 103 dyn em - 2); P the partial pressure of nonabsorbing gases
(mm Hg); A c the critical band area above which the strong band expression
becomes applicable; and c, k, C, D, and K are empirically determined
constants. Table 3.2 lists these values for H 20 and CO2 bands.

Although Eqs. (3.18) and (3.19) are derived to calculate the approximate
band absorptivity, these two formulas are not continuous when A = A c .

TABLE 3.2 Empirical Constants for H 20 and CO 2 Bands

A, tlv Xo
/. (pm) c k C D K (em-I) (em-I) KID (gem- 2)

H 20 band
0.94 38 0.27 -135 230 125 200 1400 0.54 3.86
1.1 31 0.26 -292 345 180 200 1000 0.52 7.02
1.38 163 0.30 202 460 198 350 1500 0.43 0.36
1.87 152 0.30 127 232 144 257 1100 0.62 0.28
2.7 316 0.32 337 246 150 200 1000 0.62 0.04
3.2 40.2 0.30 -144 295 151 500 540 0.51 3.25
6.3 356 0.30 302 218 157 160 900 0.72 0.41

CO 2 band
1.4 0.058 0.41 80 600
1.6 0.063 0.38 80 550
2.0 0.492 0.39 -536 138 114 80 450
2.7 3.15 0.43 -137 77 68 50 320
4.3 27.5 34 31.5 50 340
4.8 0.12 0.37 60 180
5.2 0.024 0.40 30 110

15.0 3.16 0.44 50 250
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Liou and Sasamori (1975) derived a single formula to approximate the mean
absorptivity for both weak and strong absorption in the form

A 1
Av = L1v = L1v [C + Dlog(x + x o)], (3.20)

where the same coefficients C and D in Eq. (3.19) are used with a new para-
meter Xo to denote each absorption band, and

x = upKID. (3.21)

For large optical path lengths the absorptivity expressed by Eq. (3.20)
approaches that in Eq. (3.19). Moreover, Xo was chosen in such a way that
A" in Eq. (3.20) approaches zero as x approaches zero. Thus

X o = lO-c;D. (3.22)

The numerical values of X o for H 20 are also listed in the last column of
Table 3.2. Since the partial pressure of water vapor is much smaller than the
pressure of dry air, it suffices to use the latter pressure in solar-heating
calculations.
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Fig. 3.5 A comparison of the absorptivity of 1.38 /-lm band calculated from Eqs. (3.18) and
(3.19) and from that based on Eq. (3.20) for P = 760 and 7.6 mm Hg.
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Figure 3.5 illustrates a comparison between the absorptivity calculated
from Eq. (3.20) and Eqs. (3.18) and (3.19) for the 1.38 pm water vapor band.
It is clear that the new formula gives fairly accurate absorptivity values. The
largest deviation takes place at the transition between weak and strong
absorption.

As indicated previously, the only important band for CO 2 is the 2.7 pm
band which overlaps with the 2.7 pm band of H 20. Thus, solar heating in the
troposphere is mainly generated by water vapor (Note that clouds also play
significant roles in generating solar heating.) It should be noted that the
6.3 pm H20 and 15 pm CO2 bands are important absorption bands in the
thermal infrared spectrum to be discussed in Chapter 4 where band models
for evaluations of the absorptivity will be presented in some detail. Also note
here that the absorptivity described above may be utilized to calculate the
transfer of near infrared solar radiation in cloudy and hazy atmospheres
where multiple scattering and absorption take place simultaneously.

3.5 COMPUTATION OF SOLAR HEATING RATES

The importance of the absorption of solar radiation by various gases is the
generation of heating in the atmosphere. We will outline the procedures for
the evaluation of the solar heating rate. Consider a plane-parallel absorbing
and scattering atmosphere illuminated by the solar spectral irradiance F AO

with a solar zenith angle of 80 , The downward flux density normal to the top
of the atmosphere is given by F AO cos 80 , Let the differential thickness within
the atmosphere be dZ, and let the spectral downward and upward flux
densities centered at wavelength A. be denoted by Fi and Fi, respectively.
The net flux density (downward) at a given height z is then defined by

FA(Z) = Fi(z) - F1(z). (3.23)

Referring to Fig. 3.6, because of absorption, the net flux density decreases
from the upper levels to the progressively lower levels. The loss of the net flux
density, i.e.,the net flux density divergence for the differential layer is therefore

dFiz) = Fiz) - Fiz + Az). (3.24)

If the spectral absorptivity centered at wavelength A. for the differential layer
is denoted by AA(L1Z), then Eq. (3.24) can be rewritten as

L1Fiz) = - Fi(z + dz)AiL1z). (3.25)

On the basis of the energy conservation principle, the absorbed radiant
energy has to be used to heat the layer. Thus, the heating experienced by a
layer of air due to radiation transfer may be expressed in terms of the rate of
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Fig.3.6 Divergence of the net flux density in z, p, and u coordinates.

temperature changes. It is conventionally given by

aT
LlF...(z) = -pCpLlz at'

(0)

(3.26)

where p is the air density in the layer, Cp the specific heat at constant pressure,
and t the time. The heating rate for a differential layer Az is therefore

aT
at

1 LlF,,(z)
�-�-�-�-�~�-

Cpp Llz
1 Fi(z + Llz)A...(Llz)

Cpp Llz
(3.27)

The heating rate may also be expressed in pressure coordinates. By means
of the hydrostatic equation

dp = -pgdz

with g the gravitational acceleration, we have

et g LlF,,(p)

at �C�p�~�'

where gjC p is the well-known adiabatic lapse rate.

(3.28)

(3.29)
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(3.30)

Moreover, it is sometimes convenient to compute the heating rate in terms
of the path length of the absorbing gas. The differential path length of a
specific gas (say, water vapor) is [see Eq. (1.49)J

du = Pwdz = Pw pdz = qpdz = _11 dp,
p g

where Pw denotes the water vapor density and q represents the specific
humidity. Consequently, the radiative heating rate also may be written as

st q .'1F;Ju)
---- (3.31a)at Cp.'1u·

If we divide the solar spectrum into N spectral intervals and carry out the
heating rate calculations for each spectral interval i, then the total heating
rate due to solar radiation may be written in the form

N (aT)L -.
i= 1 at i

(3.31b)

One final note may be in order. In Section 1.3.1, we pointed out that the
absorption coefficient due to pressure broadening depends strongly on the
air pressure because the half width is linearly proportional to it as noted in
Eq. (1.37). To account for the pressure dependence of absorption in an in-
homogeneous atmosphere, an empirical method has been developed. The
method takes into account the effect of atmospheric pressure variations on
the absorption process by defining first an effective pressure

15 = f; P(u) duIf; duo (3.32)

This expression places all the absorbing matter along a pressure gradient at
one pressure P. The empirical adjustment is then carried out by replacing
every Pin Eqs. (3.18)-(3.21) by P. In this manner, the variation of the ab-
sorption coefficient due to pressure changes in the atmosphere is approxi-
mately accounted for.

Figure 3.7 shows the solar heating rate profile up to 30 km using two
different atmospheric profiles and three solar zenith angles for a clear
atmosphere. Effects of absorption by 03' H 20 , 02' and CO 2 , multiple
scattering by molecules, and the ground reflection are simultaneously taken
into consideration in the radiative transfer program covering the entire solar
spectrum. In Fig. 3.7a, we see that the tropospheric heating in a tropical
atmosphere is much more pronounced than that in a midlatitude winter
-atmosphere due to the higher water vapor concentration. The maximum
heating located at a height of about 3 km is seen to be as high as 4°C/day.
The heating rate decreases drastically with increasing altitude in phase with
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Fig.3.7 Solar heating rate dependence (a) on the atmosphere and (b) on the solar zenith angle.

the exponential decrease of water vapor concentration and reaches a mini-
mum at about 15 km or so. Above 20 km, the increased solar heating is caused
exclusively by the absorption of ozone, which has a maximum concentration
at about 25 km. In these calculations, the sun is overhead ({to = cos 80 = 1)
and the surface reflectivity r, is assumed to be 15%. Effects of the position of
the sun on the heating rate are demonstrated in Fig. 3.7b. The solar irradiance
available to the atmosphere reduces by a factor of flo as the sun moves away
from the zenith. As a result, the heating rate decreases significantly as shown
in this figure.

3.6 REPRESENTATION OF POLARIZED LIGHT
AND STOKES PARAMETERS

3.6.1 Representation for a Simple Wave

Scattering of sunlight by molecules and particles takes place in the at-
mosphere. By scattering processes, molecules and particles in the path of
electromagnetic waves continuously abstract energy from the incident wave
and reradiate that same energy in all directions. Thus, in order to understand
the atmospheric scattering of sunlight, it is necessary to describe the repre-
sentation of electromagnetic waves.



3.6 Polarized Light and Stokes Parameters 67

(3.33)

An electromagnetic wave is characterized by electric and magnetic vectors
E and H, which form an orthogonal set with the direction of propagation of
the wave. In any medium, E and H are related, and it is customary to use E
in scattering discussions. We say light is polarized in a certain direction when
the vibration of the electric vector E concentrates in that direction. Hence,
the direction of polarization is defined as the direction of the electric vector.

The flow of energy and the direction of the wave propagation are repre-
sented by the Poynting vector depicted in Fig. 3.8 and in Gaussian units it is

c
S = 4nE x H,

where lSI is in the units of flux density. The electric field vector E may be
decomposed into two components, E1 and E" which represent the electric
vectors parallel (I) and perpendicular (r) to a plane through the direction of
propagation. The plane defined is called the plane of reference and its selec-
tion, in principle, is arbitrary. In scattering problems, we choose the plane
containing the incident and scattered beams as the common plane of reference
for the two beams.

-'"
E

Fig. 3.8 Propagation of an electromagnetic wave. The electric vector can be arbitrarily de-
composed into two orthogonal components. (In figures, vectors are indicated by arrows instead
of boldface)

Assuming that an electromagnetic wave propagates in the Z direction with
a propagation constant k(2njA) and a circular frequency w(kc), and that
positive amplitudes and phases for the electric field of an electromagnetic
wave in the I(E 1) and r(E r) directions are a., Gr and 6z, 6" respectively, then

(3.34)

where E1 and E, are complex, oscillating functions. Let ( = lcz - wt and take
the cosine representation for the case when the plane wave is time harmonic,
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we have
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It follows that

(3.35)

(3.36)

(3.37)

(3.40)

(3.39)

Edal = COS(cos<51 - sin (sin<5J,

Erlar = cos (cos <5 r - sin(sin<5 r .

We first multiply the first and second equations by sin <5" cos <5 r and sin <5 10

cos <5 10 respectively, and subtract one from another to obtain

(EdaJ sin <5 r - (Erlar) sin <5z = cos (sin(<5 r - <5 z) ,

(Edaz)cos <5 r - (Erlar) cos <5z = sin (sin(<5 r - <5 z) .

Upon squaring and adding the above two equations, we obtain

(Edaz)2 + (Erlar)2 - 2(Edaz)(Erlar) cos <5 = sin? <5, (3.38)

where the phase difference <5 = <5 r - <5 z•

Equation (3.38) represents the equation of a conic. The associated deter-
minant is

I

l ia? - cos Mazar)l_ sin 2 <5
"/() 2 - 2 2 :::::: 0.- cos u a.a, liar a; ar

Thus, the conic equation represents an ellipse, and the elliptically polarized
wave is illustrated in Fig. 3.9a. The ellipse is inscribed into a rectangle whose
sides are parallel to the coordinate axes and whose lengths are La, and 2ar • The
ellipse touches the sides at the points (± ai, ± a, cos <5) and (± az cos <5, ± aJ

Two special cases are of particular importance. If <5 = mn (m = 0, ± 1,
± 2, ...), then Eq. (3.38) becomes

(
Ez± Er)2 = 0, i.e., Ez = += Er
az ar a, ar

This equation describes two lines perpendicular to each other. We call the
wave in this case linearly polarized. On the other hand, if <5 = mnl2 (m = ± 1,
±3, ... ) and az = a, = a, then we have

(3.41)

This equation describes a circle, and we call the wave in this case circularly
polarized. The polarization is called right-handed when sin <5 > 0, whereas it
is called left-handed when sin <5 < 0. Right-handed and left-handed refer to
the direction of rotation (direction of fingers) when the thumb is pointed in
the direction of propagation. Geometrical representations for linear and
circular polarization are illustrated in Fig. 3.9b.
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Fig.3.9 (a) Geometrical representation of elliptical polarization. (b) Geometrical representa-
tions of linear and circular polarization.
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(3.42)

To describe the elliptically polarized wave given in Eq. (3.38), three
independent parameters a., an and 6 are needed. However, it is more con-
venient to use parameters of the same dimension. This can be achieved by
a set of four quantities called the Stokes parameters first introduced by
Stokes in 1852. Since the intensity is proportional to the absolute square
of the electric field, we may define, upon neglecting a constant of propor-
tionality, the four parameters

1= EIE'r + ErE;,

Q = EIEi - ErE;,

U = EIE; + ErEi,

V = - i(EIE; - ErEi),

where an asterisk denotes the complex conjugate value and i = J=1. I, Q,
U, and V, respectively, give the intensity, the degree of polarization, the
plane of polarization, and the ellipticity of the electromagnetic wave at
each point and in any given direction. They are real quantities that satisfy

12 = Q2 + U2 + V2.

Upon substituting Eq. (3.34) into Eq. (3.42), we have

1= af + a;,
Q = af - a;,
U = Za.a,cos 6,

V = Zcua, sin 6.

(3.43)

(3.44)

(3.45)

It is possible to describe the ellipse in Fig. 3.9 in terms of the length of
the major (b) and minor (c) axes, and the orientation angle X, which is the
angle between the direction of the major axis, and the I direction. The
ellipticity of the ellipse then can be expressed by tan /3 = ± cfb with the plus
sign for right-handed polarization and the minus sign for left-handed polar-
ization. The four Stokes parameters may be derived in terms of I, X, and /3
by direct, but lengthy analyses as

I = II + In

Q = II - I, = I cos 2/3 cos 2X,

U = I cos 2/3 sin 2X,

V = J sin 2/3.

It is seen that I and V are independent of the orientation angle X. Equation
(3.45) may be represented in Cartesian coordinates on a sphere called the
Poincare sphere shown in Fig. 3.10. The radius of the sphere is given by I,
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and the zenithal and azimuthal angles are given by n/2 - 2/3 and LX, respec-
tively. Thus, Q, U, and V denote the lengths in X, Y, and Z directions,
respectively. On this sphere, the northern and southern hemispheres represent
right-handed and left-handed elliptic polarizations, respectively. The north
and south poles denote right-handed and left-handed circular polarizations,
respectively, and points on the equatorial plane represent linear polarization.

3.6.2 Representation for a Light Beam

In representing the wave vibration using Eq. (3.34) we have assumed a
constant amplitude and phase. However, the actual light consists of many
simple waves in very rapid succession. Within a very short duration (on the
order of say, one second) more than millions of simple waves are collected
by a detector. Consequently, measurable intensities are associated with the
superposition of many millions of simple waves with independent phases. Let
the operator <) denote the time average for a time interval (t 1> ( 2 ) , then
the Stokes parameters of the entire beam of light for this time interval may
be expressed by

1= <al) + <a;) = I z+ In

Q = <al) - <a;) = II - In

U = (lazar cos 6),

V = <2azar sin 6).

(3.46)
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Based on Eq. (3.46), it is straightforward to prove that (see Exercise 3.5)

(3.47)

The degree of polarization of a stream of light can now be defined as

(3.48)

From the measurement point of view, it is desirable and convenient to
represent the Stokes parameters in terms of detectable variables. Referring
to Fig. 3.11, we introduce a retardation e in the r direction with respect to
the I direction, and consider the component of the electric field vector
in the direction making an angle ljJ with the positive I direction. Thus, for a
simple wave at time t, we have the representation for the electric field in the
form

E(t; IjJ,S) = E/cosljJ + Ere-i£sinljJ
= at cos ljJ e:" + are-i(He)-ir, sin ljJ (3.49)

The average intensity measured at a time interval (t 1 ,tz) is then given by

I(ljJ, e) = <E(t; ljJ, e)E*(t; ljJ, e)

= <a!)cos2ljJ + <a;)sinzljJ + h2a/arcosb)

x sin 2ljJ cos e -1- <2a/arsin b) sin 2ljJ sin s. (3.50)

Upon making use of Eq. (3.46) and noting that 1/cos2ljJ + I, sin2 ljJ =
(I + Q cos 2ljJ)/2, we obtain

I(ljJ,e) = 1-[1 + Qcos2ljJ + (Ucose - Vsins)sin2ljJ]. (3.51)

By virtue of Eq. (3.51), we find that the Stokes parameters may be expressed

""V
I: CD + 8
Q CD 8

Polarizer

(2) (9�.�~ €1 u
rCompensator

V �:�-�0�~�+ �(�9�~
Fig.3.11 Representation of the electric field in terms of the retardation E and the polarization
angle t/J.
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by the retardation and polarization angles as

1= 1(0°,0) + 1(90°,0),

Q = 1(0°,0) - /(90°,0),

U = 1(45°,0) - 1(135°,0)

V = - [1(45°, n/2) - 1(135°, n/2)].
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(3.52)

Thus, the Stokes parameters of a light beam can be measured by a com-
bination of a number of polarizers and a compensator (e.g., a quarter-wave
plate) as illustrated in Fig. 3.11.

On the basis of Eq. (3.51), natural light may be defined. Natural light is
the light whose intensity remains unchanged and is unaffected by the retarda-
tion ofone of the orthogonal components relative to the other when resolved
in any direction in the transverse plane. That is to say, for natural light we
must require l(ljJ, s) = 1/2. The intensity is then independent ofljJ and s, Thus,
the necessary and sufficient condition that light be natural is Q = U = V = o.
Under this condition, the percentage of the degree of polarization defined
in Eq. (3.48) for natural light is zero. As a consequence, natural light is also
referred to as unpolarized light; light emitted from the sun is unpolarized.
However, the unpolarized sunlight after interacting with molecules and
particles through scattering events generally becomes partially polarized.
This will be discussed in the next section. Natural light characterized by
Q = U = V = 0 can be shown to be equivalent to a mixture of any two
independent oppositely polarized streams of half the intensity.

In the atmosphere, light is generally partially polarized and its Stokes
parameters (1, Q, U, V) may be decomposed into two independent groups
characterized by natural light and elliptically polarized light as

ltJ �~r-(Q' +f+ V')'/'J + l(Q' +TV')'i'J. (353)

Moreover, from Eq. (3.45), the plane of polarization can be determined by
tan2x = U/Q, and the ellipticity by sin2f3 = V/(Q2 + U2 + V 2)1!2.

3.7 RAYLEIGH SCATTERING

The simplest and in some ways the most important example of a physical
law oflight scattering with various applications is that discovered by Rayleigh
in 1871. His findings led to the explanation of the blue of the sky. In this
section we formulate the scattering of unpolarized sunlight by air molecules
and describe its important application to the atmosphere.
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3.7.1 Theoretical Development

Consider a small homogeneous, isotropic spherical particle whose radius
is much smaller than the wavelength of the incident radiation. The incident
radiation produces a homogeneous electric field Eo, called the applied field.
Since the particle is very small the applied field generates a dipole configura-
tion on it. The electric field of the particle, caused by the electric dipole,
modifies the applied field inside and near the particle. Let E be the combined
field, i.e., the applied field plus the particle's own field. Further, let Po be the
induced dipole moment, then we apply the electrostatic formula to give

Po = IXEo· (3.54)

This equation defines the polarizability IX of a small particle. The dimensions
of Eo and Po are in units of charge per area and charge times length, respec-
tively, and IX has the dimension of volume.

The applied field Eo generates oscillation of an electric dipole in a fixed
direction. The oscillating dipole, in turn, produces a plane polarized electro-
magnetic wave, the scattered wave. To evaluate the scattered electric field in
regions which are far away from the dipole, we let r denote the distance
between the dipole and the observational point, y the angle between the
scattered dipole moment p and the direction of observation, and c the velocity
of light. According to the classical electromagnetic solution given by Hertz
in 1889, the scattered electric field is proportional to the acceleration of the
scattered dipole moment and sin y, but is inversely proportional to the
distance r. In Gaussian units (cgs), the electric field in the far field is given by

(3.55)

In an oscillating periodic field, the scattered dipole moment may be written
in terms of the induced dipole moment as

(3.56)

Note that k is the wave number, and kc = OJ is the circular frequency. By
combining Eqs. (3.54) and (3.56), Eq. (3.55) yields

-r ikir r- ct]

E = - Eo e k2IXsin y.
r

(3.57)

Now we consider the scattering of unpolarized sunlight by air molecules.
Let the plane defined by the directions of incident and scattered waves be the
reference plane (plane of scattering). Since any electric vector may be arbi-
trarily decomposed into orthogonal components, we may choose these two
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components perpendicular (Er ) and parallel (E/) to the plane of scattering.
From the previous section, we note that the un polarized sunlight is charac-
terized by the same electric field in r and I directions and by a random phase
relation between these two components. Thus, we may consider separately the
scattering of the two electric field components E Or and E Ol by molecules
assumed to be homogeneous, isotropic spherical particles. And according to
Eq. (3.57), we have

-ik(r-rt)
e k2 'E; = - EOr o: sm Y1,

r
-ik(r-ct)

e k2 'E1 = -E0 1 «sm Y2'
r

(3.58a)

(3.58b)

Referring to Fig. 3.12, we see that Yl = nl2 and Y2 = nl2 - 0, where 0 is
defined as the scattering angle, which is an angle between the incident and
scattered waves. Note that Yl is always equal to 90° because the scattered
dipole moment (or the scattered electric field) in the r direction is normal to
the scattering plane defined previously.

Direction of suniight

P,e

Di recti on of scattering
(out of the paper)

Fig.3.12 Scattering by a dipole.

The corresponding intensities (per solid angle AQ) of the incident and
scattered radiation in Gaussian units may be written as

1 c I 1210 = AQ 4n Eo , 1 c 1 121=-- E .
AQ4n

(3.59)

Thus, Eqs. (3.58) and (3.59) can be expressed in the form of intensities as

I, = Iork4r:t.2Ir2,

I[ = IOlk4r:t.2cos20Ir2,

(3.60a)

(3.60b)
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where I, and II are polarized intensity components perpendicular and parallel
to the plane containing the incident and scattered waves, i.e., the plane of
scattering. The total scattered intensity of the unpolarized sunlight incident
on a molecule in the direction of 8 is then

(3.61 )

But for unpolarized sunlight, lOr = 10 1 = 10/2, and by noting that k = Zn]A,
we get

I _ 10 2 (2n)4 1 + cos
2

8 (3.62)
- r2 IX A 2·

This is the original formula derived by Rayleigh, and we call the scattering of
sunlight by molecules Rayleigh scattering. By this formula, the intensity
scattered by a molecule for unpolarized sunlight is proportional to the
incident intensity 10 and is inversely proportional to the square ofthe distance
between the molecule and the point of observation. In addition to these two
factors, it also depends on the polarizability, the wavelength of the incident
wave, and the scattering angle. The dependence of these three parameters on
the scattering of sunlight by molecules introduces a number of significant
physical features.

3.7.2 Phase Function, Scattering Cross Section,
and PoJarizability

On the basis of Eqs. (3.60) and (3.62), the intensity scattered by a molecule
depends on the polarization characteristics of the incident light. For vertically
(r) polarized incident light, the scattered intensity is independent of the
direction in the scattering plane. In this case then, the scattering is isotropic.
On the other hand, for horizonally (I) polarized incident light, the scattered
intensity is a function of cos? 8. When the incident light is unpolarized, such
as sunlight, the scattered intensity depends on (1 + cos? 8). The angular
scattering patterns for the three types of incident polarization are illustrated
in Fig. 3.13. From this diagram, we see that scattering of unpolarized sunlight
by molecules has maxima in the forward (0°) and backward (180°) directions,
whereas it shows minima in the side directions (90° and 270°). Moreover, it
should be pointed out that light scattered by particles or molecules is not
limited in the plane of incidence, but is in all directions. Because ofthe spheri-
cal symmetry assumed for molecules, scattering patterns in planes other than
the plane of incidence are the same as that depicted in Fig. 3.13. Thus, the
three-dimensional scattering pattern for the unpolarized incident light
resembles the shape of a doughnut.
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(3.63)

�~ ..... _//'-_//
Eo it(31 ',//

E o r �~ -----
Fig.3.13 Polar diagram of the scattered intensity for Rayleigh molecules; (I) polarized
incident light with electric vector perpendicular to the plane of drawing, (2) polarized incident
light with electric vector in the plane of drawing, and (3) unpolarized incident light.

To describe the angular distribution of the scattered energy in conjunction
with multiple scattering and radiative transfer analyses and applications for
planetary atmospheres, we find it necessary and 'sufficient to define a non-
dimensional parameter called the phase function (or sometimes referred to
as indicatrix) P(cos 0), such that

12n In P(cos 0) sin 0 d0 d¢ = 1.
Jo Jo 4n

By this definition, the phase function is said to be normalized to unity. Upon
performing simple integrations, the phase function of Rayleigh scattering for
incident unpolarized sunlight is given by

P(cos 0) = i(1 + cos 2 0 ). (3.64)

Employing the definition of the phase function, Eq. (3.62)may be rewritten
in the form

(3.65a)

It follows that the angular distribution of the scattered intensity is directly
associated with the phase function.

The scattered flux (or power, in units of energy per time) f can be evaluated
by integrating the scattered flux density (I i1Q) over the appropriate area a
distance r away from the scatterer. Thus,

(3.66)

where r2 dQ represents the area according to the definition of the solid angle.
Inserting the expression for the scattered intensity and differential solid angle
defined in Eqs. (3.65) and (1.5), respectively, into Eq. (3.66) and carrying out
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integrations over the solid angle of a sphere, we obtain the equivalent isotropi-
cally scattered flux in the form

(3.67)

where the incident flux density F 0 is equal to 10 ""Q. At this point we may
define the scattering cross section a; per one molecule as

(3.68)

The scattering cross section (in units of area) represents the amount of
incident energy which is removed from the original direction due to a single
scattering event such that the energy is redistributed isotropically on the area
of a sphere whose center is the scatterer and whose radius is r.

In terms of the scattering cross section, the scattered intensity may be
expressed by

(3.65b)

This is the general expression for the scattered intensity, which is valid not
only for molecules but also for particles whose sizes are larger than the
incident wavelength to be discussed in Chapter 5.

The polarizability c; which occurred in the preceding equations, can be
derived from the principle of the dispersion of electromagnetic waves, and it
is given by

3 (m 2
- 1)

rx = 4nN
s

;n2 + 2 ' (3.69)

where N, is the total number of molecules per unit volume, and m is the
nondimensional refractive index of molecules. This equation is called
Lorentz-Lorenz formula and its derivation is given in Appendix D. The
refractive index is an optical parameter associated with the velocity change of
electromagnetic waves in a medium with respect to vacuum. Its definition
and physical meanings also are given in Appendix D. Normally, the refractive
indices of atmospheric particles and molecules are composed of a real part
mr and an imaginary part m, corresponding, respectively, to the scattering
and absorption properties of particles and molecules. In the solar visible
spectrum, the imaginary parts of the refractive indices for air molecules are
insignificantly small so that absorption of solar radiation by air molecules
may be neglected in the scattering discussion. The real parts of the refractive
indices for air molecules in the solar spectrum are very close to 1, but they
significantly depend on the wavelength (or frequency) of the incident radia-
tion as illustrated in Appendix D. Because of this dependence, white light
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(3.70)

(3.72)

may be dispersed by molecules, which function like prisms, into component
colors. The real part of the refractive index derived in Appendix D (Eq. (D.17))
may be approximately fitted by

( _ 1) X 108 = 64328 2,949,810 25,540
m . . + 146 _ I, 2 + 41 -.-1, 2'

where ), is in units of ,urn. Since m, is close to 1, for all practical purposes,
Eq. (3.69) may be approximated by

1 2
IX �~ -- im; - 1). (3.71)

4nNs

Thus, the scattering cross section defined in Eq. (3.68) becomes

�8�n�3�(�m�~ - 1)2
a; = 3.-1,4N2 f(h).

s

A correction factor f(h) is added in Eq. (3.68) to take into consideration the
anisotropic property of molecules, where f(h) = (6 + 3h)/(6 - 7h) with the
anisotropic factor h of 0.035. By anisotropy, we mean that the refractive
index of molecules varies along X, Y, and Z directions, and thus is a vector,
not a scalar. Hence, the polarizability IX is a tensor.

The optical depth [see Eq. (1.62)] of the entire molecular atomosphere
at a given wavelength may be calculated from the scattering cross section
in the form

(3.73)

where N(Z) denotes the number density of molecules as a function of height,
and z, is the top of the atmosphere. The optical depth is a physical parameter
indicating the attenuation power of molecules with respect to a specific
wavelength of the incident light.

3.7.3 Blue Sky and Sky Polarization

Returning to Eq. (3.65a), we see that the scattered intensity depends on
the wavelength of incident light, and the index of refraction of air molecules
contained in the polarizability term. According to the analyses given in
Appendix D and Eq. (3.70), the index of refraction also depends slightly
on the wavelength. However, the dependence of the refractive index on the
wavelength is relatively insignificant in calculating the scattered intensity
as compared with the explicit wavelength term. Thus, the intensity scattered
by air molecules in a specific direction may be symbolically expressed in
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(3.74)

The inverse dependence of the scattered intensity on the wavelength to
the fourth power is a direct consequence of the theory of Rayleigh scattering,
and it is the foundation for the explanation of the blue of the sky.

In accord with the observed solar energy spectrum depicted in Fig. 2.6,
it is seen that a large portion of the solar energy is contained in the visible
spectrum from blue to red regions. Blue light (A :::::: 0.425 ,urn) has a shorter
wavelength than red light (A:::::: 0.650 ,urn). Consequently, according to
Eq. (3.74) blue light scatters about 5.5 more than red light. It is apparent
that the ..1,-4 law causes more of the blue light to be scattered than the red,
the green, and the yellow, and so the sky, when viewed away from the sun's
disk, appears blue. Moreover, since the molecular density decreases drasti-
cally with height, it is anticipated that the sky should gradually darken to
become completely black in outer space in directions away from the sun.
And the sun itself should appear whiter and brighter with increasing height.
As the sun approaches the horizon (at sunset or sunrise), sunlight travels
through more air molecules, and therefore more and more blue light and
light with shorter wavelengths are scattered out of the beam of light, and
the luminous sun shows a deeper red color than at the zenith. Since the
violet light �(�~�0�.�4�0�5 ,urn) has a shorter wavelength than the blue, why then
doesn't the sky appear violet? This is because the energy contained in the
violet spectrum is much smaller than that contained in the blue spectrum,
and also because the human eye has a much lower response to the violet
color.

Larger particles in the atmosphere such as aerosols, cloud droplets,
and ice crystals also scatter sunlight and produce many fascinating optical
phenomena. However, their single scattering properties are less wavelength-
selective and depend largely upon the particle size. As a result of this, clouds
in the atmosphere generally appear white instead of blue. In a cloudy atmo-
sphere, the sky appears blue diluted with white scattered light, resulting in
a less pure blue sky than would have been expected from pure Rayleigh
scattering. Scattering by a spherical particle of arbitrary size has been
treated exactly by Mie in 1908 by means of solving the electromagnetic
wave equation derived from the fundamental Maxwell equations. To
distinguish it from Rayleigh scattering, we call scattering by large particles
Mie scattering, which will be discussed comprehensively in Chapter 5.

Another important phenomenon resulting from Rayleigh scattering
theory is the sky polarization. For many atmospheric sensing applications
utilizing polarization, a parameter called the degree of linear polarization
is commonly used, and it is defined by neglecting U and V components in
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Eq. (3.48) in the form

LP = -Q/I.

81

(3.75a)

(3.75b)

Thus, from Eqs. (3.60a) and (3.60b), the degree of linear polarization in the
case of Rayleigh scattering simply is given by

LP(0) = _ Ii - I r = _ cos
2

0 - 1 = sin
2

0 .
Ii + I, cos2 0 + 1 cos2 0 + 1

In Fig. 3.14, we plot the angular distribution of the degree of linear polari-
zation generated by molecules for unpolarized light. The polarization pattern
reveals that in the forward and backward directions the scattered light
remains completely unpolarized, whereas at 90° scattering angle the scattered
light becomes completely polarized. In other directions, the scattered light
is partially polarized with the percentage of polarization ranging from 0
to 100%.

The theory of Rayleigh scattering developed in Section 3.7.1 is based on
the assumption that molecules are homogeneous and isotropic spheres.

1.0

1.0

Fig. 3.14 Angular distribution of the degree of linear polarization for a Rayleigh particle in
the case of un polarized incident light. The pattern has axial symmetry around the direction of
propagation of the incident light.
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However, molecules are in general anisotropic in which polarizability defined
in Eq. (3.69) varies in three axes, and hence, is a tensor instead of a scalar.
The anisotropic effect of molecules reduces the degree of linear polarization
defined in Eq. (3.75a) by only a small percentage. At 90° scattering angle, the
degree of linear polarization for dry air is about 0.94. Further, the theory of
Rayleigh scattering developed previously considers only single (or primary)
scattering, i.e., scattering occurs only once. But in the earth's atmosphere,
which contains a large number of molecules and aerosol particles, light may
undergo infinite numbers of scattering events. In addition, the earth's surface
also reflects light that reaches it. Multiple scattering processes involving the
atmosphere and the surface become very complicated and require more ad-
vanced treatments based on the radiative transfer theory, which will be dis-
cussed in Chapter 6.

The theory of Rayleigh scattering predicts neutral points, i.e.,points of zero
polarization, only at the exact forward and backward directions. However,
owing to multiple scattering of molecules and particulates, and reflection of
the surface, there normally exists a number of neutral points in cloudless
atmospheres. Observations of neutral points and partially polarized sky
light go back to 1809 by Arago. He discovered the existence of a neutral point
at a position in the sky at about 25° above the antisolar direction (direction
exactly opposite to that of the sun). The other two neutral points, which
normally occur in the sunlit sky 25° above and 200 below the sun, were
discovered by Babinet in 1840 and by Brewster in 1842, respectively. These
three neutral points were named to honor these three discoverers, and their
relative positions are shown in Fig. 3.15. The neutral points in the sky vary
by about 5° or so, depending on the turbidity (an indication of the amount
of aerosol loadings in the atmosphere), the sun's elevation angle, and the

Loco I zen i th

Fig.3.15 The position of neutral points in the meridian of the sun. Note that the Arago and
Brewster points generally are not above the horizons at the same time.
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reflection characteristics of the surface at which observations are made.
Since the latter two parameters can easily be measured in a planned experi-
ment, variations in neutral points may give an indication of the turbidity of
the atmosphere. Use of the polarization technique for the inference of cloud
and aerosol properties will be further discussed in Section 7.2.2.2.

EXERCISES

3.1 Under the photoequilibrium condition, derive expressions for the
concentrations of ozone and atomic oxygen.

3.2 The principal photochemical reactions involving oxygen in the ther-
mosphere are found to be

O 2 + hv (Jc < 1751 �A�)�~�O + 0,
K"

0+0+M-->02+ M,
K'

0+ 0---"-40 2 + hv.

Express these photochemical processes in terms of the rate of change of the
number density of ° and 02' Assuming that the number density of O 2 is
constant, derive the number density of ° under the photochemical equilib-
rium condition.

3.3* Given the following vertical profile of the specific humidity and down-
ward flux densities for various water vapor bands at 600 mb, and assuming
that the scattering effect may be neglected, compute the solar heating rate
due to water vapor when the sun is overhead.

Pressure Specific Spectral Fractional solar
(mb) humidity (%) bands (/lm) flux densities

1000 0.82 0.94 0.1346
950 0.49 1.10 0.0892
900 0.43 1.38 0.1021

850 0.42 1.87 0,0622

800 0.41 2.7 0.0300
750 0.30 3,2 0.0218

700 0.20
650 0.09
600 0.04

3.4 What would be the Stokes parameters for unpolarized, linearly
polarized, and circularly polarized light?

* Simple computer programming is required.
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3.5 Any time-average quantity may be represented by the summation of
individual components, e.g., <x) = �L�~�= 1 tnxn. Utilizing this principle, show
that Eq. (3.47) is true based on the relationships given in Eq. (3.46). In doing
this exercise, let N = 2 for simplicity.

3.6 (a) By rotating the electric field vector through an angle X, i.e.,

�[ �E �~ �J = [ �c�~�s X sin XJ[E1J.
E; -smx cos r E,

show that the Stokes parameters in the prime system are given by

lI'J II 0 0 0'] II jQ' = 0 cos 2X sin 2X 0 Q.
u' 0 -sin2x cos2X 0 U
V' 0 0 0 1 V

(b) Show that elliptically polarized light can be decomposed into
a circularly polarized part and a linearly polarized part. Then rotate the
linearly polarized beam through the angle X and show that X which makes
the intensity maximum (or minimum) in the direction l' is given by
tan2x = UjQ.

(c) Assuming a light beam with 50% linear polarization in the
rdirection and another independent light beam also with 50% right-handed
circular polarization, (1) what would be the Stokes parameters for the
mixture and the resulting total intensity and percentage polarization? (2)
what would be the measured intensity if a polarizer having a plane of polar-
ization along the r direction is used? and (3) sketch a diagram to denote the
resultant polarization.

(d) With reference to (c), decompose the partially polarized light
beam into natural light and 100% elliptically polarized light and compute
the plane of polarization Xand ellipticity angle {J for the polarized component.

(e) The natural light is equivalent to any two independent oppositely
polarized beams of half the intensity. By virtue of this principle, evaluate
the Stokes parameters for these two polarized beams based on results
obtained from (d).

(f) Upon combining the polarized beams derived from (d) and (e),
what would be the Stokes parameters corresponding to two independent
polarized beams?

3.7 The number of molecules per cubic centimeter of air at sea level in
standard atmospheric conditions is about 2.55 x 101 9 em - 3. Calculate the
scattering cross section of molecules at 0.3, 0.5, and 0.7 )lm wavelengths.



Exercises 85

3.8 The number density profile as a function of height is given by the
following table:

Height(Km): 0 2 4 6 8 10 12 14 16
N(x 1018 em 3): 25.5 20.9 17.0 13.7 10.9 8.60 6.49 4.74 3.46

Calculate the optical depth of a clear atmosphere at wavelengths shown in
Exercise 3.7.

3.9 For all practical purposes, we find that the refractive index m, and
the molecular density p are related by

(mr - l)gas = const x p.

At sea level the refractive index of air is about 1.000292 for a wavelength of
0.3 us». Find the refractive indices at heights given in Exercise 3.8. Note
that the density (g ern - 3) is related to the number density N (cm - 3) by
p = (MINo)N, where M is the molecular weight of air (28.97 g mole t '], and
No is the Avogadro's number (6.02295 x 102 3 mole- "), Because the refrac-
tive index varies with the density of the atmosphere, light rays bend according
to the atmospheric density profile and produce a number of atmospheric
optical phenomena such as looming, sinking, and superior and inferior
mirages.

3.10 An unpolarized ruby laser operated at 0.7 ,urn is projected vertically
into a clear sky to investigate the density of the atmosphere. A detector
located 10 km from the base of the laser is used to receive the flux density
scattered from the laser beam by air molecules. Assuming that the laser
output has a uniform distribution of flux density F 0 across the beam (i.e.,
10 = Foil sr) and if effects of multiple scattering may be neglected, find the
scattered flux density at 6 and 10 km received by a detector whose field of
view in a plane is 0.05 rad. Use the scattering cross section and molecular
density profile obtained from Exercises 3.7 and 3.8.

3.11 (a) The radar backscattering coefficient (in units of per length) for a
volume of identical cloud droplets is defined as

[3" = NcCJ" = Nc(JsP(n),

where N; is the droplet number density, (J" the backscattering cross section,
and P(n) the phase function at backscatter. Employing the expressions for
the scattering cross section and phase function, and noting that N, = 1/V,
where the volume of a spherical drop with a radius a is V = ina3

, show that
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The dependence of the backscattering coefficient on the sixth power of the
droplet radius is a significant consequence for the study of cloud and
precipitation echoes by means of a radar reflectivity technique.

(b) Assuming that the number density and the radius of cloud
droplets are 100 em �~ 3 and 20 11m, respectively, calculate [3" for the following
two radar wavelengths with the corresponding refractive indices for water:

A(cm): 10 3.21
m: 3.99-1.47i 7.14-2.89i

Compute [3" again using only the real part of the refractive indices, and show
the differences between two computations.
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Chapter 4
INFRARED RADIATION TRANSFER
IN THE ATMOSPHERE

4.1 THE THERMAL INFRARED SPECTRUM AND
ATMOSPHERIC EFFECT

The earth-atmosphere reflects about 31%of the incoming solar radiation
at the top of the atmosphere and absorbs the remaining part. Absorption
and scattering of solar radiation take place in the atmosphere and these
processes have been discussed in the last chapter. A large portion of the
incoming solar radiation is absorbed by the earth's surface, which is approxi-
mately 70% ocean and 30% land. Over a climatological period of time,
say, over a year or longer, there is apparently no significant change in global
temperatures of the earth. Consequently, radiant energy emitted from the
sun that is absorbed in the earth-atmosphere system has to be reemitted
to space so that an equilibrium energy state can be maintained.

Just as the sun emits electromagnetic radiation covering all frequencies,
so does the earth. However, the global mean temperature of the earth-
atmosphere system is only about 250oK. This temperature is obviously
much lower than that of the sun's photosphere. As a consequence, we find
from Planck's law and Wien's displacement law discussed in Chapter 1
that the intensity of the Planck function is less and the wavelength for the
intensity peak of the earth's radiation field is longer. We call the energy
emitted from the earth-atmosphere system thermal infrared (or terrestrial)
radiation. We plot the spectral distribution of radiance emitted by a black-
body source at various temperatures in the terrestrial range in terms of

87
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wave number, customarily employed in the studies of infrared radiative
transfer. It is depicted in Fig. 4.1. In this figure, a measured atmospheric
emission spectrum obtained from the Infrared Interferometer Spectrometer
(IRIS) instrument on board the Nimbus IV satellite is also shown (after
Kunde et al., 1974). The envelope of the emission spectrum is very close
to the spectrum emitted from a blackbody with a temperature of about
290oK, which is about the temperature of the surface. Clearly, certain por-
tions of the infrared radiation are trapped by various gases in the atmosphere.

Among these gases, carbon dioxide, water vapor, and ozone are the most
important absorbers. Some minor constituents, such as carbon monoxide,
nitrous oxide, methane, and nitric oxide, which are not shown in Fig. 4.1,
are relatively insignificant absorbers insofar as the heat budget of the earth-
atmosphere is concerned. Carbon dioxide absorbs infrared radiation signi-
ficantly in the 15 ,urn band from about 600 to 800 em - 1. This spectral region
also corresponds to the maximum intensity of the Planck function in the
wave number domain. Water vapor absorbs thermal infrared in the 6.3
,urn band from about 1200 to 2000 em -1 and in the rotational band (< 500
em - 1). Except for ozone, which has an absorption band in the 9.6 tIm region,
the atmosphere is relatively transparent from 800 to 1200 em -1. This region
is referred to as the atmospheric window. In addition to the 15,um band,
carbon dioxide also has an absorption band in the shorter wavelength
of the 4.3 ,urn region. The distribution of carbon dioxide is fairly uniform
over the global space, although there has been observational evidence
indicating a continuous global increase over the past century owing to the
increase of the combustion of the fossil fuels. This leads to the question of
the earth's climate and possible climatic changes due to the increasing
carbon dioxide concentration. Unlike carbon dioxide, however, water
vapor and ozone are highly variable both with respect to time and the
geographical location. These variations are vital to the radiation budget
of the earth-atmosphere system and to long-term climatic changes.

In a clear atmosphere without clouds and aerosols, a large portion (about
50%) of solar energy transmits through the atmosphere and is absorbed
by the earth's surface (see Fig. 2.6). Energy emitted from the earth, on the
contrary, is absorbed largely by carbon dioxide, water vapor, and ozone
in the atmosphere as evident in Fig. 4.1. Trapping of thermal infrared radia-
tion by atmospheric gases is typical of the atmosphere and is therefore
called the atmospheric effect. The atmospheric effect is sometimes referred
to as the greenhouse effect because in a similar way glass, which covers a
greenhouse transmits short-wave solar radiation, but absorbs long-wave
thermal infrared radiation. Fleagle and Businger (1963) pointed out that
the high temperatures in a greenhouse are caused primarily by the glass
cover which prevents the warm air from rising and removing heat from the



!'"...
;l
�~e:.-"::'..
i
rJJ...,
'"..,
2'
3

l
�~
3

i
ili
;:;"
t"J;;
I:l.

240

I
I

(H2O)2 1
I

H2OE

200 l' H2Oo 1_.......
I CO2... I 1iii

C\I 160 1°3 1I

E -o
j"
(.)
Q) 120en

til...
Q)-
lJJ 80
o
Z
<t
0 40
<t
0::

olE, 1
200 400 600 800 1000 1200 1400 1600 1800 2000

WAVE NUMBER (em-I)

Fig. 4.1 The terrestrial infrared spectra and various absorption bands. Also shown is an acture atmospheric emission spectrum taken by the Nimbus
IV IRIS instrument near Guam at 15.rN and 215.3'W on April 27. 1970.

00
'0



90 4 Infrared Radiation Transfer in the Atmosphere

greenhouse and are not to be attributed to the absorption of thermal infrared
radiation.

Solar radiation is also called short-Nave radiation because solar energy
is concentrated in shorter wavelengths with its peak at about 0.5 Jim. Thermal
infrared radiation from the earth's atmosphere is referred to as long-wave
radiation because its maximum energy is in the longer wavelength at about
10 Jim. The solar and infrared spectra are separated into two spectral ranges
above and below about 4 Jim, and the overlap between them is relatively
insignificant. This distinction makes it possible to treat the two types of
radiative transfer and source functions separately and thereby simplify
the complexity of the transfer problem. In this chapter, after briefly dis-
cussing the general characteristics of absorption spectra of water vapor,
carbon dioxide, and ozone, the fundamental theory of infrared radiation
is introduced. Absorption-band models, concepts ofthe broadband emissivity
and radiation charts, and computations of infrared cooling rates are further
introduced. Lastly, the problem of the carbon dioxide and climate is
presented.

4.2 GENERAL CHARACTERISTICS OF
INFRARED ABSORPTION SPECTRA
OF ATMOSPHERIC GASES

Inspection of high-resolution spectroscopic data reveals that there are
thousands of absorption lines within each absorption band noted in the
previous section. Figure 4.2 illustrates the fine structure of molecular absorp-
tion bands for the 320-380 em -1 region where lines are due to water vapor,
and for the 680-740 em �~ 1 region where lines are due to carbon dioxide.
The optically active gases of the atmosphere, carbon dioxide, water vapor,
and ozone are all triatomic molecules. The band spectroscopic properties
of such molecules are discussed comprehensively by Herzberg (1945). Here
we shall briefly describe their spectroscopic characteristics as they relate
to our later development and discussion.

Spectroscopic evidence indicates that the three atoms of COz form a
symmetrical straight-line array having the carbon atom in the middle
flanked by oxygen atoms on either side. The length of C-O bond in the
fundamental vibration state is 1.1632 A. Because of linear symmetry it
cannot have a static electric dipole moment. Figure 4.3a shows the three
normal modes of vibration of such a configuration. The symmetrical motion
VI should not give rise to an electric dipole moment and therefore should
not be optically active. The V 1 vibration mode has been identified in the
Raman spectrum near 7.5 Jim. In the Vz vibration mode, the dipole moment
is perpendicular to the axis of the molecule. The 15 Jim band represents
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this particular vibration. This band is referred to as afundamental, because
it is caused by a transition from the ground state to the first excited vibra-
tional state. Another fundamental corresponding to the V3 vibration mode
is the 4.3 fim band, which appears at the short-wave edge of the blackbody
curve of atmospheric temperatures.

Because of its straight-line arrangement, the COz molecule has spec-
troscopic properties close to those of a diatomic molecule. The 15 fim band
in particular has all three branches of a typical band of a diatomic molecule,
the P, Q, and R branches, corresponding to jumps ofthe rotational quantum
number by -1, 0, and + 1. The lines of the P and R branches are appro-
ximately equidistant. Thus, if the superposition of these two branches with
Vz fundamental could be neglected, the periodic Elsasser model to be dis-
cussed in Section 4.5.2 would be an excellent approximation to the trans-
mittance calculations. The Q branch is quite closely clustered near the
center of the 15 fim band. For this reason, it does not contribute importantly
to radiative transfer.

The water molecule forms an isosceles triangle which is obtuse and has
an apical angle of 104S. The distance between the oxygen and hydrogen
atoms is 0.958 A. Figure 4.3b shows the three normal modes of vibration
for such a structure. The 6.3 fim band has been identified as the Vz funda-
mental. The two fundamentals, VI and V3, are found close together in a band
near 2.7 fim, i.e., on the short-wave side of the infrared spectral region. This
band and the bands representing higher harmonics discussed in Section
3.4 are of meteorological interest in that they give rise to absorption of
sunlight by the atmosphere.

The band covering the region from 900 to 40 em - 1 shown in Fig. 4.1
represents the purely rotational spectrum of water vapor. The water molecule
forms an asymmetrical top with respect to rotation, and the line structure
of the spectrum does not have the simplicity of a symmetrical rotator such
as found in the COz molecule. Close inspection shows that the absorption
lines have no clear-cut regularity. A typical fine structure of the rotational
band was shown in Fig. 4.2. Because of the random irregularity, computations
of the transmittances for such a spectrum may be modeled by the Goody
statistical formula to be discussed in Section 4.5.3. The fine structure of the
6.3 fim band is essentially similar to that of the pure rotational band.

In the region between the two water vapor bands, i.e., between about
8 and 12 usn, the so-called atmospheric window, absorption is continuous
and is primarily due to water vapor species. Absorption by carbon dioxide
is typically a small part of the total in this region. The overlap of water
vapor with ozone in this region is insignificant in the computations of
cooling rates since water vapor is important mainly in the lower atmosphere,
while cooling due to ozone takes place primarily in the stratosphere and
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higher. In recent years, there has been evidence that contribution to the
continuous absorption in the infrared window regions is chiefly caused by
the water dimer (HzO)z in addition to the self-broadening contribution in
the wings of the water vapor lines. The latter contribution is normally small
in the atmosphere. The water dimer is produced by the reaction 2H zO �~

(HzO)z + E, where E is the binding energy of the dimer molecule. The
absorption by the water dimer depends on the water vapor pressure and
temperature.

The ozone molecule is of the triatomic nonlinear type (Fig. 4.3b) with
a relatively strong rotation spectrum. The apical angle and the distance
between atomic oxygen are 116.8° and 1.278 A, respectively. The three
fundamental vibrational bands Vb vz, and V3 occur at wavelengths of 9.066,
14.27, and 9.597 pm, respectively. The very strong V3 and moderately strong
VI fundamentals combine to make the well-known 9.6 f.1m band of ozone.
The Vz fundamental is well masked by the 15 f.1m band of COz- The strong
band at about 4.7 f.1m produced by the overtone and combination frequencies
of 03 vibrations is in a weak portion of the Planckian energy distribution
for the atmosphere. Note that the absorption bands of 03 in the UV part
of the solar spectrum are due to electronic transitions in the ozone molecule.

4.3 THEORY OF INFRARED TRANSFER IN
PLANE-PARALLEL ATMOSPHERES

Consider a nonscattering, plane-parallel atmosphere which is in local
thermodynamic equilibrium and assume that thermal infrared radiation
from the earth's atmosphere is independent of the azimuthal angle <p. The
general equation of transfer derived in Eq. (1.63) may then be expressed
in the wave number domain as

d1vCr:, f.1)
f.1 dr = 1Jr,f.1) - BJT)

d1v(r, - f.1)
-f.1 dr = 1v(r, -f.1) - BJT)

(upward),

(downward),

(4.1)

(4.2)

where the source function is given by the Planck function. The solution
for the upward and downward intensities as given in Eqs. (1.64) and (1.65)
are

1Jr, f.1) = 1v(rr, f.1)e-(I,-r l!1l + II' Bv[T(r ')]e-(t'-'l!1l dr', (4.3)JI f.1

1v(r , - f.1) = IJO, - f.1)e- I!1l + f; Bv[T(r
l)]e-(r-,'l/ll

d;',
(4.4)
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where the differential normal optical thickness from Eq. (1.62) is given by

dt = -kvpdz. (4.5)

At the bottom of the atmosphere (T = Td, the upward radiation simply
arises from the emission of earth's surface. To a good approximation, the
earth's surface can be considered as a blackbody in the infrared region.
Hence, 1if1, f.1) = B v( T s) , where T; is the surface temperature. Since there
is no downward radiation source at the top of the atmosphere (r = 0), we
shall have 1.(0, - f.1) = 0.

Thus, the monochromatic upward and downward flux densities defined
in Eq. (1.9) are given by

FJ(r) = 2nBv(T.) fo
l

e-(r1-r)!Ilf.1df.1

+ 2 f: fl nBv[T(r')]e-(r'-r)!lldT' df.1, (4.6)

�F�~�(�T�) = 2 fol f; nB v [ T (r ')] e- (t - r')!ll dr ' du. (4.7)

We define the exponential integral as

(4.8)

It is clear that

(4.9)

In Eqs. (4.6) and (4.7), let x = 1/f.1, then du = -dxlx2. Further, we note that

and

f
oo e-(t'-r)x r

---;:2c--dx = EiT - r).
1 x

(4.10)

(4.11 )

Consequently, the integrations over f.1 in Eqs. (4.6) and (4.7) may be accom-
plished in terms of the well-known exponential integral in the forms

FJ(T) = 2nB.(Ts)E 3(rl - T) + 21'1 nBv[T(r')]E2(r' - T)dT', (4.12)

�F�~�(�r�) = 2 f; nBv[T(r')]Eir - T')dr'. (4.13)
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To evaluate the total upward and downward fluxes at level r for the entire
infrared spectrum, integrations over the wave number are required. Thus,

r" roo+ 2 J, Jo nBv[T(r')]E2(r' - r)dvdr'

Ft(r) = Sow �F�~�(�r�)�d�r = 2 S; Sow nB v[T(r')]E2(r - r')dvdr'.

(4.14)

(4.15)

(4.16)

At this point the transfer ofthermal infrared radiation in clear atmospheres
is formally solved. However, there are several practical difficulties of applying
Eqs. (4.14) and (4.15) directly to the atmosphere. The chief one is the rapid
variation of absorption coefficient with wave number in the vibrational and
rotational spectrum of the infrared as illustrated in Fig. 4.2. To obtain the
fluxes at a given level r in the atmosphere, we now have to perform the double
integrations over more than thousands of absorption lines. Even with the
fast computers currently available, direct line-by-line 'calculations are still
very tedious and not practical. The solution to this catastrophe has been to
consider not monochromatic radiation but finite spectral intervals of bands
for which the effective transmission function (also referred to as transmittance
or transmissivity) can be derived by theory or experiment. These transmission
functions are generally much more complicated than the simple exponential
attenuation that is valid for monochromatic radiation described in Eq. (1.51).
In the following section, we shall discuss the physical meanings of the
transmission function, or simply the transmittance, in the theory of infrared
radiative transfer.

4.4 CONCEPT OF TRANSMISSION FUNCTION
(TRANSMITTANCE)

Let us consider a spectral interval of width �~�v which is small enough so
that a mean value of the Planck function B,,(T) may be utilized, but large
enough so that it consists of several absorption lines. Then the transmission
function may be defined by

5,,(r) = Al r «: dv,
LlV JLl.v

where the monochromatic optical depth defined In Eq. (1.62) may be
written as

(4.17)
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Note that, is a function of the wave number and path length u. The total
normal path length and optical depth are

and I U
''1 = Jo k..du, (4.18)

respectively. In order to evaluate Eq. (4.16), we must know how the absorption
coefficient k; varies with v within the spectral interval.

We now return to Eq. (4.12). Instead of performing the integration for the
entire spectral region, we employ a finite spectral interval Av in the wave
number integration. Thus, we have

+ 2 IT' nB,;(T) I £2(" - ,)dvd,'. (4.19)Jr J.1v
Analogous to the definition of the transmission function for intensity, we
may define the slab or diffuse transmission function for flux density in the form

It is apparent from Eq. (4.9) that

�d�Y�~�(�,�) = -2 I £2(') dv.
dt JL'.v Av

(4.20)

(4.21)

(4.23)

Inserting the expressions in Eqs. (4.20) and (4.21) into Eq. (4.19), we have

t _ orf IT" �d�/�7�~�(�,�' - ,) ,
Fv(,) - �n�B�v�(�T�s�)�~ '1('1 - r) - JT nBv(') d,' dt', (4.22)

Hence, the spectral upward flux density is now expressed in terms of the
spectral averaged Planck irradiance and the slab transmission function. It is
sometimes convenient to use the path length u instead of the optical depth r.
By virtue of Eqs. (4.17) and (4.18), Eq. (4.22) may be rewritten to yield

t( ) _ () orf() lU (') �d�Y�~�(�u - u') d 'Fv u - nBv T; �~ v u + nBv u --d-- u.
o u'

In a similar manner, the spectral downward flux density may be derived to
grve

�F�~�(�u�) = I U nBv[T(u')] �d�Y�~�~�U�' - u) du'.
JUl u'

(4.24)

Here, we note that we are simply making the coordinate transformation
between, and u. In doing so, the effectof k; is not considered. The dependence
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(4.25)

of the slab transmission function on the absorption coefficient, and hence
the temperature will be discussed fully in Section 4.8.2.

If appropriate flux transmission functions can be obtained to represent
moderately wide spectral intervals prior to the path length integration, then
a great simplification in the transfer calculations can be achieved. Upon
changing r to U and letting x = ulu, Eq, (4.20) can be rewritten to give

�5�~�(�U�) = 2 fo
l

5 v(u/f.1.)f.1.df.1. = 2u2f) .Yv(x)dx/x
3

.

If in Eq. (4.16), 5 v as a function of the path length U may be derived either
from the theoretical method or empirical means, then Eq, (4.25) can readily
be computed numerically. The shape of �5�~ is extremely similar to �5�~ in
many atmospheric conditions. Thus, for most practical applications, it suf-
fices to set

�5�~�(�U�) = .'1v(1.66u), (4.26)

where the constant 1.66 is called the diffusivity factor.
With the assistance of Eq, (4.26), calculations may be carried out for the

upward and downward fluxes for any absorption band at a given level whose
path length is u. The main guestion of concern, of course, is how to determine
the transmission function 5 v for absorption bands in the infrared spectrum.
One approach has been to measure 5 v for a given absorption band in the
laboratory employing a number of path lengths under various atmospheric
conditions. Then by means of Eq. (4.26) values of 5 v may be incorporated
into Eqs, (4.23) and (4.24) to obtain the flux densities in the atmosphere.
Another means has been to utilize theoretical band models which are
classical, and we shall discuss them in some detail.

4.5 BAND MODELS FOR TRANSMISSION FUNCTIONS
(TRANSMITTANCES)

4.5.1 A Single Spectra Line

The shape of spectral lines can depend on a variety of factors, but in the
lower part of the atmosphere the infrared lines generally have a Lorentz
shape expressed by Eq. (1.34). Assuming that the absorption coefficient k;
is independent of path length, i.e., the atmosphere is considered to be homo-
geneous, the transmission function may be written as

(4.27)
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Substitution of k; in Eq. (1.34) into Eq. (4.27)yields

1 I [ SIXu/n Jg-v(u) = A dvexp - ( )2 2·
LlV Av V - Vo + IX

We introduce new variables x and y in the forms

(4.28)

x = Su/2nIX, tany/2 = (v - vo)/o(, (4.29)

(4.31)

If the interval of the spectral line is taken wide enough, the limits of the
number integration may be extended from - 00 to + 00. Thus, by virtue of
Eqs. (4.28) and (4.29) the absorptivity may be written in the form

IX InAv = 1 - g-v = Av -n {I - exp[ -x(l + cosy)]}d(tany/2). (4.30)

We now perform integration by parts and carry out further trigonometric
manipulations to give

IXxe-X InAv = __ (e-XCOSY - cosye-XCOSY)dy.
Av -r rr

We note that the integral representation of the Bessel function is given by

(4.32)

Moreover, the modified Bessel function of the first kind of order n is

In(x) = i-nJiix). (4.33)

Thus, in terms of the modified Bessel functions, Eq. (4.31) may be written as

Av =;= (2nIX/Av)L(x) = (2IXn/Av)xe- x[Io(x) + I 1(x )], (4.34)

where L(x) is known as the Ladenberg and Reiche function. The two signifi-
cant limiting cases are associated with weak and strong absorption. When
x -> 0, J o(ix) �~ 1, and iJ 1 (ix) �~ - x/2. Thus, L(x) �~ x and we have

Av �~ (S/Av)u. (4.35)

The absorptivity in this case is directly proportional to the path length, and
it is called the region of linear absorption. On the other hand, when x -> 00,

In(ix) �~ i'e" /J2nx. Thus, L(x) �~ J2x/n and we have

Av �~ (2J&X/Av)JU. (4.36)

The absorptivity in this case is proportional to the square root of the path
length, and it is called the region of square root absorption.
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The linear and square root approximations for the absorptivity may also
be derived directly from Eqs. (4.27) and (4.28). For weak line absorption,
k.u « 1, wave number integration can be carried out analytically. For strong
line absorption, « «: v - Vo, again, integration may also be performed. The
absorptivity of a single line for various absorbers in terms of u is shown in
Fig. 4.4. It is evident that for strong absorption, the central part of the line
has been absorbed completely, and additional absorption can take place
only in the wing portions of the absorption line.

4.5.2 Regular (Elsasser) Band Model

Inspection of realistic infrared bands suggests that a single spectral line
denoted in Eq. (1.34) may repeat itself periodically (or regularly) as shown
in Fig. 4.5. Thus, the absorption coefficient at a wave number displacement

-28 -8 0 +8 +28
Fig. 4.5 Regular (Elsasser) band model.
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v from the center of one particular line is then

00 Sa/n
k; = . I ( _ 'b? + 2 '

1= -00 V I a
(4.37)

(4.38)

where 6 is the line spacing. From the Mittag-Leffler theorem (Whittacker
and Watson, 1940), it can be proven that this infinite sum can be expressed
in terms of periodic and hyperbolic functions as

k = �~ sinhf]
v 6 cosh P- cos')"

where

f] = 2na/6, ')' = 2nv/b. (4.39)

Upon variable transformation, the transmission function may be expressed
by

Also we have

d:T., 1 j: -k uk d-= -- e v ')'

du 2n -r rr v·

Let

1 - cosh f] cos ')'
cosp = .

cosh ji - cos')' ,

then

d - sinh P d - k 15 dp - - ')' - - v - ')'.
cosh f] - cos')' S

Substituting Eqs. (4.38) and (4.43) into Eq. (4.41), we get

d9v S fn (Su coshf] - COSP)d
-= -- exp -- P
du 2n6 -r n: 15 sinh f .

We then define a new variable

y = SU/(6sinhf])

to obtain

d.cYv sinh f] r- = --- exp(-ycoshf] - ycosp)dp
dy 2n- n

= - sinh f]e - y cosh j3J o(iy).

(4.40)

(4.41 )

(4.42)

(4.43)

(4.44)

(4.45)

(4.46)
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Since !Tv = 0 when u (or y) �~ 00, it follows that

/!/v = f:v s»; = sinh 13 roo e- Y coshf3Jo(iy) dy

= Loo e-zcothf3Jo(iz/sinhj3)dz,

101

(4.47)

where z = y sinh 13. This is the Elsasser transmission function which can be
numerically evaluated. Further approximations and simplifications also can
be made on this model. Since rx « 6 and 13 �~ 0, we find

and

1 13 13 3 1 13coth 13 = - + - - - + ... �~ - + -
f3 3 45 13 3'

1 13 713 3 1 13csch 13 = - - - + - - ... �~ - - -
13 6 360 13 6'

J o(izcsch 13) �~ e' csch f31J2nz csch 13

(4.48)

(4.49)

With the approximations given in Eqs. (4.48) and (4.49), Eq. (4.47) becomes

!Tv = _1_ roo J7f7Ze- zf3! 2 dz.
J2iC Jz

Finally, we set x 2 = zj312; the absorptivity then is given by

(4.50)

2 roo -x2
Av = 1 - JTC Jx e dx. (4.51)

By noting that (2IJic) f
O
o:e -X 2 dx = 1, we have

A" = J; LX e- x 2 dx = erf(x) = erf(Jnt
rxu

). (4.52)

Values of erf(x) may be obtained from standard mathematical tables. This
band model for periodic lines was introduced by Elsasser (1938) who ob-
served fairly regularly spaced absorption lines in the 15 ,urn CO 2 band. It is
sometimes referred to as the Elsasser band. For small values of x, we see
that Ali = Zx] JTC = 2J Srxul6. This is the region of square root absorption
introduced in Eq. (4.36).
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(4.58)

4.5.3 Statistical (Goody) Band Model

By inspection of the water vapor rotational band Goody (1952) dis-
covered that the only common feature over a 25 em - 1 range is the apparent
random line positions. Hence, one should inquire into the absorption of a
band with certain random properties.

Let �~�v be a spectral interval consisting of n lines of mean distance 6 so
that �~�v = no, Let P(Si) be the probability that the ith line has an intensity
S;, and let P be normalized such that

Jow P(S) dS = 1. (4.53)

It is assumed that any line has an equal probability of being anywhere in
the interval �~�v�. The mean transmission function is found by averaging over
all positions and all intensity of lines. Hence,

:Yv = �(�~�l�v�t Lv dv , ... Lv dv;

(4.54)
x fw P(S )e-k,UdS ... fw P(S )e-knUdS.lo 1 1 .lo n n,

where k; denotes the absorption coefficient for the nth line. Since all the
integrals are alike, we have

:Yv=[LJ dv Jow p(S)e-kudsJ =[1- �~�v�J dv JoW P(S)(I-e- kU)dsJ.

(4.55)

Since �~�v = no, when n becomes large, Eq. (4.55) approaches an exponential
function, i.e., (1 - x/n)n ---> e- x

. Thus,

Let the lines be of different line intensities and consider a simple Poisson
distribution for the probability of their intensities, i.e.,

P(S) = S-le-S /S , (4.57)

where S represents the mean line intensity. By introducing the Lorentz
shape for k into Eq. (4.56), and carrying out the line intensity and wave
number integration in the domain ( - (f), (f), the final result of the trans-
mission function is given by

[
s; ( SU)-1/2]

:Yv = exp - T 1 + nrt. .
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(4.60a)

Note that the transmission function derived from the random model can
be expressed as a function of two parameters only, namely, sts and na/(j
apart from the path length u. For a given absorption band, these two para-
meters may be derived by fitting the random model from the laboratory
or quantum-mechanical data. It is clear that the transmission function is
now reduced to exponential attenuation. Because of its computational
simplicity and relatively high accuracy in the transmittance calculations,
the random model has been widely used in atmospheric cooling rate com-
putations and satellite-sensing applications.

To derive S/(j and na/(j from the quantum-mechanical data, we first
define the equivalent width for n absorption lines as

1 n [ ] (SU)-1/2W = - ,I JiV; = fow P(S) f(1 - e-kU)dv dS = Su 1 + - .(4.59)
n 1= 1 tu:

In view of the definition of the absorptivity [see Eqs. (4.27) and (4.30)J, the
equivalent width is essentially the spectral absorptivity. We then consider
the random model in the limit of the strong and weak absorption regions.
For weak absorption Su/na « 1 and by virtue of Eq. (4.35), we must have

1 s« 1
n(j IJiV;(weak) = 6 = L1v ISiU.

Note that no = L1v, and S, is the line intensity for the ith individual line.
For strong absorption Su/na» 1 and by virtue of Eq. (4.36), we must also
have

n
1(j

I JiV;(strong) = �~ JnSau = :v I JSiaiu.

Thus, from Eqs. (4.60a) and (4.60b), we find

�~ ISi Sna = �(�2�I�~�)�2
(j L1v ' (j2 L1v

(4.60b)

(4.61)

On the other hand, the transmission function as a function of the gaseous
path length may be measured in the laboratory. Moreover, the random
model [Eq. (4.58)J can be expressed in the form

(4.62)

It follows that a statistical regression analysis in (u/ln .:Jvf and u for the
laboratory data will give the slope (j2/Sna and the intercept (j2/S2. Con-
sequently S/(j and na/(j can be determined.
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TABLE 4.1 Random Model Band Parameters in

the Infrared Region

Interval S/o
Band (em-I) (cm ' g-I) na/o

H 20 rotational 40-160 7210.30 0.182
160-280 6024.80 0.094
280-380 1614.10 0.081
380-500 139.03 0.080
500-600 21.64 0.068
600-720 2.919 0.060
720-800 0.386 0.059
800-900 0.0715 0.067

COz 15 lIm 582-752 718.7 0.448

039.6 jim 1000.0-1006.5 6.99 x IOz 5.0
1006.5-1013.0 1.40 x 102 5.0
1013.0-1019.5 2.79 x 103 5.0
1019.5-1026.0 4.66 x 103 5.5
1026.0-1032.5 5.11 x 103 5.8
1032.5-1039.0 3.72 x 103 8.0
1039.0-1045.5 2.57 x 103 6.1
1045.5-1052.0 6.05 x 103 8.4
1052.0-1058.5 7.69 x 103 8.3
1058.5-1065.0 2.79 x 103 6.7

HzO 6.3 jim 1200-1350 12.65 0.089
1350-1450 134.4 0.230
1450-1550 632.9 0.320
1550-1650 331.2 0.296
1650-1750 434.1 0.452
1750-1850 136.0 0.359
1850-1950 35.65 0.165
1950-2050 9.015 0.104
2050-2200 1.529 0.116

Utilizing the laboratory data for the H 2 0 6.3 ,urn vibrational-rotational
band and the quantum-mechanical data for the H 20 rotational and CO 2

15 ,urn bands, Rodgers and Walshaw (1966) derived the random model
parameters for these bands. These parameters are summarized in Table
4.1. In this table, random model parameters for the 0 3 9.6 ,urn band com-
puted by Goldman and Kyle (1968) from the quantum-mechanical data
are also listed. In the ozone band, the band parameters have been calculated
for the interval 1000-1060 em -1 at a temperature of 233°K using an average
interval of 6.5 em - 1.
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4.6 CURTIS-GODSON APPROXIMATION
FOR INHOMOGENEOUS ATMOSPHERES
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In the analysis of transmission functions and band models in the previous
section, assumption was made that the absorption coefficient k; is in-
dependent of the path length. However, as noted earlier in Section 1.3.1,
the collision broadening characterized by the Lorentz profile depends, in
general, on the pressure and temperature. Therefore, in order to apply
the formulations of band models presented in the previous sections to an
inhomogeneous atmosphere whose pressure and temperature vary with
height, certain physical adjustments are needed. Among the various methods,
there is a simplified procedure known as the Curtis-Godson (C-G) appro-
ximation for the application of the homogeneous transmission to an in-
inhomogeneous path length. It has been illustrated that the C-G appro-
ximation is fairly accurate for the infrared transfer calculations involving
water vapor and carbon dioxide atmospheres.

We first note that the finite width of a Lorentz line is produced by the
collision of the radiating molecule with other molecules. As has been dis-
cussed in Section 1.3.1 the number of collisions is proportional to PT- 1/2

based on the kinetic theory, and the expression for the half width has been
given in Eq. (1.37). It has been found that the pressure effect shown in Eq. (1.37)
is extremely significant in atmospheric infrared transfer calculations, whereas
the temperature effect is less important. This is owing to the fact that in the
earth's atmosphere the pressure has a much larger variation than the temper-
ature. The line intensity S is also a function of the path length through the
temperature dependence, and it can be expressed by

(4.63)

where E is the energy of the lower state, K the Boltzmann constant, 111 the
numerical factor related to the absorber (111 = Ij, and �~ for CO 2 , H20, and°3 , respectively), To the standard atmospheric temperature, and So the line
intensity at standard atmospheric conditions.

Consider now a path length in the atmosphere containing integrated mass
u such that

where we write
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The temperature and pressure dependence of the absorption coefficient is
associated with variations of the half width and line intensity in the atmo-
sphere. We define two new parameters

s = f: S(T) dulu,

a = f: S(T)a(P, T) duIIou SeT) du,

(4.64a)

(4.64b)

which denote the mean line intensity and half width, respectively, over an
inhomogeneous path (0,u).

Equations (4.64a) and (4.64b) constitute the so-called Curtis-Godson
approximation for transfer of infrared radiation through an inhomogeneous
path in the atmosphere. It states that the transmission ofthe inhomogeneous
atmospheric path is approximately equal to the transmission of a homo-
geneous path (constant temperature and pressure) whose integrated absorber
amount is u with a mean half width a and a mean line intensity S. The C-G
approximation eliminates the integration over the exact line shapes which
would otherwise be required as evident in Section 4.4. It has been found to
be a reasonably good approximation for the strong and weak lines, and also
gives reasonably good results in the intermediate cases for the 15 pm CO 2

band and H 20 rotational band. However, the C-G approximation does not
give accurate results for the 9.6 .urn 0 3 band owing to the fact that ozone
increases to the stratosphere with decreasing pressure. This is contrary to the
water vapor and carbon dioxide cases in which the optical mass decreases
with decreasing pressure. We note that if the temperature effect is neglected,
Eq. (4.64b) is essentially equivalent to Eq. (3.32) discussed in Section 3.4.

4.7 COMPUTATION OF INFRARED COOLING RATES

In Section 4.4, flux formulations were made for a spectral interval �~�v�. To
obtain the flux density covering the entire infrared spectrum, summation over
the band flux densities is required. Assuming that the infrared spectrum
consists of N spectral intervals �~�v�i�(�i = 1, ... ,N), then the total upward
infrared flux density based on Eq. (4.23) is given by

N

Fi(u) = I FJ,(u)
i= 1
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Likewise, the total downward infrared flux density is
N N

Ft(u) = L FJ,(u) = I f nB",[T(u')] �d�,�'�T�~�,�(�u�' - u).
i::::: 1 i= 1 1
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(4.65b)

In Section 3.5, we have introduced the formulation of solar heating rate in
which the net transfer of radiation is downward. On the other hand, however,
thermal infrared radiation may be thought of as initiating from the earth's
surface (upward). Consequently, we may define the net flux density at a given
height as

F(z) = Ft(z) - F!(z). (4.66a)

Let the two plane-parallel levels in the atmosphere be denoted by z and z + �~�z

(Fig. 4.6),then the net loss of radiant energy per unit area per unit time suffered
by the layer �~�z is

�~�F = F(z + �~�z�) - F(z). (4.66b)

(4.67)

The radiative cooling or warming experienced by a layer of air whose thick-
ness is �~�z may be evaluated from the principle of conservation of energy as
pointed out in Section 3.5. If the net flux density at the top of the layer is
smaller than that at the bottom, the difference must be used to heat the layer,
and vice versa. On the basis of the discussions in Section 3.5, the heating or
cooling rate may be expressed by

1 �~�F g �~�F g �~�F
�-�~�~ �-�-�~

cpP �~�z cp �~�p c, �~�u

Infrared cooling rates as a function of height in a typical clear tropical
atmosphere are illustrated in Fig. 4.7 based on band-by-band calculations

0--------------00

p----f---------- z (u)

F(z)

o (0)

Fig. 4.6 Divergence of net flux density in u, z, and p coordinates.
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1978).

(Roewe and Liou, 1978). The random model parameters for 03' CO 2 , and
H 20 bands listed in Table 4.1 were used in the cooling rate calculations in
which the Curtis-Godson approximation for inhomogeneous atmospheres
was also utilized. In addition, the recent data presented by Roberts et al. (1976)
for the water continuum were also incorporated in the calculations. Ac-
cording to their analyses, the continuum absorption coefficient at a standard
temperature of 296°K in the 8-12 .urn window region is given by

k(v,296) = a + be-/3v, (4.68a)

where a = 4.2 cm' �g�~ 1, b = 5588 cm' �g�~ 1, and j3 = 7.87 x 10- 3 em. The
expression accounts for the continuum absorption contributions due to both
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(4.68b)

water dimer and water vapor. Furthermore, the temperature dependence
of the absorption coefficient has been found to be quite significant, and it
can be taken into account by the empirical formula

k(v, T) = k(v, 296)exp [To �(�~ - �2�~�6�) ]

with a best empirical value of 18000K for To.
Figure 4.7 shows the band-by-band as well as total atmospheric cooling

rates. In the lower 2 km the most important band influencing cooling is the
water vapor continuum. This is due to the rapid increase in the temperature
and partial pressure of water vapor as the surface is approached. However,
above 5 km the continuum contributes little to the total cooling rate. The
contribution of the H 20 6.3 pm rotational-vibrational band to the total
cooling rate is always small compared to other bands. The reason is that the
Planckian curves for temperatures representative of the earth's atmosphere
contain only a small amount of energy at these wavelengths compared with
bands closer to the peak of the Planckian curve. While the water vapor
continuum is seen to dominate the lower tropospheric cooling, the cooling in
the middle and upper tropospheres is primarily caused by absorption in the
water vapor rotational band. The rather strong heating effect of ozone be-
tween 18 and 27 km results from a large increase in the ozone concentration
at these levels, which are strongly warmed by radiation from the ground.
Above 30 km the cooling rate begins to increase rapidly in the CO 2 15pm
and 0 3 9.6 pm bands, and cooling to space becomes increasingly significant
and effective. In order to correctly compute the cooling rates in the upper
atmosphere, transition from the Lorentz line shape to the Doppler line pro-
file should be taken into consideration.

4.8 INFRARED FLUX IN TERMS OF STEFAN-BOLTZMANN
LAW AND RADIATION CHART

4.8.1 Concept of Broadband Flux Emissivity

In reference to Eqs. (4.14) and (4.15) [see also Eqs. (4.23) and (4.24)J, the
total upward and downward infrared flux densities may be expressed by

(4.69)

(4.70)
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(4.73)

where �g�-�~ denotes the monochromatic slab transmission function. From the
Stefan-Boltzmann law introduced in Section 1.2.2, we have

foGO nBJT)dv = (JT4
. (4.71)

Utilizing this relation, Eqs. (4.69) and (4.70) may be rewritten in the forms

Fi(u) = (JT;tf(u, T s) + f: (JT4(u') dtf(u �~�u�~�" T) du', (4.72)

Ft(u) = ru (JT4(u') dtf(u' d-' U, T) du',
JUt u

where we define the isothermal broadband flux transmissivity, which is a
function of temperature and path length in the form

(4.74)

In defining this parameter, we assume that the plane-parallel atmosphere may
be divided into many infinitesimal layers such that each layer may be thought
of as an isothermal layer where the temperature is a constant. Moreover, the
isothermal broadband flux emissivity is defined by

I/(U, T) = 1 - l(u, T) = foGO nB v(T)[1 - �g�-�~�(�u�)�J dvj((Jr). (4.75a)

The slab transmission functions �g�-�~ derived from either theory or experi-
ment normally are available for small spectral intervals but not for mono-
chromatic wave numbers as discussed in the previous sections. Thus, in
practice, the broadband emissivity is given by

N

,/(u, T) = L: nBv,(T)[1 - �g�-�~�'�(�u�)�J I1v;/((JT4
) ,

i= 1

(4.75b)

where the infrared spectrum is divided into N subspectral intervals
I1vi (i - 1, ... , N). Flux emissivity values for H 2 0 , CO 2 , and 0 3 have been
determined empirically by Elsasser and Culbertson (1960) and presented
correctly by Staley and Jurica (1970).

Figures 4.8a and b depict the broadband flux emissivities for water vapor
and carbon dioxide as functions of the path length for a number of tempera-
tures. Note that the path length units for carbon dioxide are in em atm. For
large carbon dioxide path lengths, it is seen that the temperature dependence
of the flux emissivity is quite significant. To correct for the water vapor and
carbon dioxide overlap, let the path lengths for water vapor and carbon
dioxide be u.; and ue , respectively. Hence, the monochromatic flux trans-
mission function taking into account both water vapor and carbon dioxide
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absorption may be written as

�g�-�~�(�u�w�, uc) = �g�-�~�(�u�w�)�'�'�l�~�(�u�c�)�'

Thus, Eq. (4.75a) may be rewritten in the form

I/(Uw,u.; T) = I/(Uw, T) + I/(Uc, T) - L11/(Uw,Un T), (4.75c)

where the last term represents a correction due to overlap of the wings of
water vapor and carbon dioxide radiation, and is given by

L1<f(uw,uC ' T) = fo
CD

nBv(T)[l - �g�-�~�(�U�w�)�J [1 - �g�-�~�(�U�c�)�J dv/(O"T 4
) .

H 2 0 - C0 2 overlap correction quantities L1ef were also provided by Staley
and Jurica for a number of temperatures.

Having obtained the empirical broadband flux emissivity, total downward
and upward infrared flux densities can be computed from Eqs. (4.72) and
(4.73), respectively, for given atmospheric temperature and gaseous profiles.
Subsequently, infrared cooling rates due to various gases can be evaluated.
However, since the slope of the flux emissivity def(u)/du in Eqs. (4.72) and
(4.73) is generally difficult to obtain accurately from curves shown in Fig. 4.8,
it is desirable to perform integration by parts for these two equations to
remove the differentiation of the broadband flux transmissivity with respect
to the path length. Exercise 4.8 involves the computation of infrared flux
densities and cooling rates utilizing the broadband emissivity values.

4.8.2 Radiation Chart

For the purpose of developing the concept ofthe radiation chart, we define
the monochromatic slab transmission function for flux density in the form
[see Eq. (4.20)J

�d�g�-�~�C�r�)

dr
(4.76)

(4.77)

Thus, the monochromatic upward and downward flux densities shown in
Eqs. (4.12) and (4.13) may be rewritten as

F i ( ) B (T) OTf( ) 1<1 B ( ') �d�.�'�l�~�(�r�' - r) d 'vr =n v s.:1vrl-r - tt vr r,
r di'

(4.78)
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Integration by parts yields the form

FJ(r) = {nBv(TJ - �n�B�v�[�T�(�r�1�)�]�}�§�'�~�(�r�1 - r) + nBv[T(r)]

i r , OTf( , ) dnBJr') d r+ ·'J'v r - r d' r,
r r

II3

(4.79)

In reference to Fig. 4.9, we change the optical depth coordinate to the
temperature and path length coordinate and assume that the surface tem-
perature is the same as the air temperature immediately above the surface,
i.e., T, = T( r 1)' By noting that T(O) = T t , Eqs. (4.79) and (4.80) may be
rewritten to give

(4.81)

(4.82)

- IT [ roo §'f(U' _ u T') dnBv(T') dvJ at:
T, Jo v , d'T'

To construct the radiation chart, we define

roo f dnBv(T)
Q(u, T) = Jo §,Ju, T) dT dv.

Tt
U 1 0

(T' u') ---tfl - - - - - - (r')

T u (r

(T' u') •F' (r ')----------

(4.83)

o 7//77//7777777777
Fig. 4.9 Coordinate systems for T, u, and temperature T. Note that r increases downward
whereas u increases upward.
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Further, we note �[�y�~�(�O�, T) = 1J

roo nB.(T)dv = roo dv rT yf(O T) dnBvCT) rr
.lo \ Jo Jo \' d'T'

= SOT Q(O,T) st: = (JT4 (4.84)

and

Sow �n�B�v�(�T�t�)�Y�~�(�u�j - U, T t) dv

= Sow dv SOT, �d�~�' �[�n�B�v�(�T�)�Y�~�(�U�l - u, T)J st:

_ roo rT , [OTf , dnBvCT)
- Jo dv .lo �.�~ vCu j - u, T) dT

B ( ') �d�Y�~�(�u�j - u, T)JdT'+ n v T dT . (4.85)

If the temperature dependence of the slab transmittance can be neglected,
i.e., �d�.�r�f�~�/�d�T �~ 0, we should have

Sow �n�B�v�C�T�t�)�.�'�J�~�(�U�j - u, Tt)dv �~ SoTt Q(Uj - u, T)dT. (4.86)

By virtue of Eqs. (4.84) and (4.86), we obtain

F"(u) = rTQ(O,T) ar + fTt Q(u' - u, T) ir + fa Q(u, - u, T)dT, (4.87)Jo T �~

Fi(u) = SOT Q(O,T)dT + S;' Q(u - u', T)dT. (4.88)

It is evident that the upward and downward flux densities are now given by
a closed integration in Q-T domain and thus, they may be estimated by
means of the graphical method on a diagram. Equations (4.87) and (4.88)
originally were derived by Elsasser (1942).We now describe how the diagram,
the radiation chart, is constructed.

We first define the abscissa and ordinate ofthe radiation chart, respectively,
as

y = Q/(2aT), (4.89)

where a is an arbitrary constant, so that

y dx = �~ 2aT dT = QdT.
2aT

(4.90)

Hence, an area on the Q-T diagram is equal to the flux densities as defined
by Eqs. (4.87) and (4.88). We next find the boundaries of the diagram. From
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Eq. (4.83), the quantity Q is a function of two variables u and T and has a
maximum value when �.�~�~ = I; i.e., u = O. Thus,

(4.91)Qmax = roo �~ nBv(T)dv = dd roo nBJT)dv = -ld (uT4
) = 4uT 3

.Jo dT T Jo c T

It follows that Ymax= (2u/a 2)x. Since Y is linearly proportional to x in this
case, U = 0 is represented by a straight line on the diagram and forms the
upper edge of the radiation chart. Moreover, when u = 00, �.�~�~ = 0; this
implies Q = 0; i.e., Y = O. We may interpret that at this line there is an
infinite path length which absorbs all the radiation falling upon it, the so-
called blackbody. The radiation chart is schematically shown in Fig. 4.IO.
The abscissa is x = aT2 which increases from the right to the left, and the
ordinate is Y = Q/(2aT). The vertical lines are isotherms T, while the slanting
curves represent lines of constant path length u (isopleths).

o
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Fig.4.10 Schematic diagram of the Elsasser's radiation chart.

To evaluate the downward and upward flux densities due to water vapor
defined by Eqs. (4.87)and (4.88) in the radiation chart, we proceed as follows:

0--> T (along U = 0), AB }
T --> T, (along (u' - u), u' = U 1, u), BC Ft(u) = area (ABCA),

T, --> 0 (along (Ul - u)), CA

0--> T (along u = 0), AB }
T --> T; (along (u - u'), u' = U, 0), BE Fi(u) = area (ABEF A).

T; = black surface, EF
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We note that in the last evaluation of the upward flux density, the tempera-
ture integration reaches the surface. Since the surface follows the black-
body radiation and may be thought of as composed of an infinitely thick
isothermal layer of temperature T" point E has to reach the point where
u = 00 along the isotherm T s ' We further note that the flux coming from
an isothermal layer of infinite thickness is given by the area of the triangle
along u = 0 to the right of the isotherm corresponding to the temperature
of the layer.

To compute the upward and downward flux densities due to carbon
dioxide, an empirical method is utilized. It is assumed that CO 2 absorbs
so strongly in the 15 J.1m band that a thin atmosphere may be considered
as a blackbody in this spectral interval. Thus, Ft "(C02) at any reference
level must originate in the thin layer of temperature T immediately adjacent
to the level, and it is approximately given by 0.185(JT4

• It is now straight-
forward to evaluate the net flux density and the infrared cooling rate on
the radiation chart. Since the upward and downward flux densities are
the same for CO2 emission, the cooling rate calculation employing the
Elsasser's radiation chart is due to water vapor only. Various graphical
methods to estimate the infrared fluxes based on the principle already
discussed also have been presented by Moller (1943) and Yamamoto (1952).

In reference to Eq. (4.86), we see that

(00 (T -Jo �n�B�v�(�T�)�:�r�~�(�u�, T) dv = Jo Q(u, T) dT (4.92)

represents the transmission of an isothermal layer of path length u. Thus,
the emission of this isothermal layer may be written as

SOOO nBJT)[1 - �:�r�~�(�u�, T)] dv = SOT R(u, T)dT, (4.93)

where a new parameter R(u, T) is defined in terms of the flux transmission
function. Moreover, from the broadband flux transmissivity and emissivity
defined in Eqs. (4.74) and (4.75), it is apparent that

It should be noted that in the construction of Elsasser's radiation chart,
effect of the temperature dependence on the slab transmittance has been
neglected so that Eq. (4.86) may be applied. Zdunkowski et. al. (1966),
Sasamori (1968), and Charlock and Herman (1976) have pointed out this
shortcoming and have discussed the validity of using the numerical tables pre-
sented by Elsasser and Culbertson (1960) in the flux density calculations.
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In recent years, one of the major concerns in climate studies has been
the steady increase in the carbon dioxide content of the atmosphere produced
by the rapid burning offossil fuels and its impact on the atmospheric tempera-
ture and climate changes of the earth-atmosphere system. Since the begin-
ning of the industrial revolution more than a century ago, man-made carbon
dioxide has been released increasingly and continuously to the atmosphere
through the combustion of fossil fuels (primarily coal, petroleum, and
natural gas). The combustion offossil carbon produces CO 2 via the oxidation
reaction C + O 2 ---+ CO 2 .

The atmospheric CO 2 concentrations recorded at Mauna Loa, Hawaii,
and other locations show a steady increase in the annual average. Figure
4.11 depicts the monthly values of CO 2 concentration at Mauna Loa (19°N).
The yearly increase in concentration is also given in the abscissa. There are
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Fig. 4.11 Mean monthly values of CO 2 concentration at Mauna Loa, Hawaii, for the period
1958-1971. The solid line is the best-fit to the data (from Study of Man's Impact on Climate,
1971).
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two distinct features in these observations. The first is a seasonal variation
in which the CO 2 concentration decreases during the summer growing
season of the northern hemisphere. The second is a long-term upward
trend presumed to be a consequence of the combustion of fossil fuels. The
increase in the annual average amounts to about 4% rise in total CO 2

between about 1958 and 1972. The present-day CO 2 excess relative to the
year of 1850 ( �~ 290 ppm, i.e., parts per million by volume) is estimated to be
at about 13%. Moreover, it has been estimated that between 50 and 75%
of the fossil CO 2 input to the atmosphere from human activities has stayed
in the atmosphere with the remaining part gone into the ocean and the
biosphere, mostly the forests. It is also estimated that the present CO 2

concentration with a value of about 330 ppm will reach some �3�8�0�~ 390 ppm
by the year 2000.

As discussed in Section 3.4,CO2 is virtually transparent to solar radiation.
However, it is a strong absorber in the 15 Jim band �(�~�1�2�-�1�8 Jim) of the
thermal infrared spectrum described in various sections of this chapter.
Consequently, an increase of the atmospheric CO2 content could result in
trapping the outgoing thermal infrared radiation emitted from the lower
atmosphere and could produce the greenhouse effect, raising its temperature.
To what degree and extent will the increase of the CO 2 concentration in-
fluence the atmospheric and earth's surface temperatures?

There have been a number of investigations on the effect of the changes of
atmospheric CO 2 on the atmospheric radiative budget. But a reliable deter-
mination of the changes of atmospheric temperature due to the variation of
the CO2 concentration must take into consideration not only the radiative
aspect of CO 2 properties, but also the convective nature of the lower atmo-
sphere (see Section 8.5.2). Based on a radiative-convective equilibrium model
(see also Section 8.5.2), Manabe and Wetherald (1967) concluded that in-
creases of CO2 resulted in a warming of the entire lower atmosphere. Using
the assumptions of constant relative humidity and fixed cloudiness and the
broadband emissivity values for H 20 , CO 2 , and 03, they found that the
changes of mean atmospheric temperature due to CO 2 are such that a 10%
increase of CO 2 concentration (from 300 to 330 ppm) would lead to a
warming of 0.3°K. Doubling of CO 2 concentration from 300 to 600 ppm
produces a 2.36°K increase in the equilibrium temperature of the earth's
surface. More recently, by means of a three-dimensional general circulation
model, Manabe and Wetherald (1975) showed an increase of 2.39°K by
doubling the CO 2 concentration, a slightly higher value than their earlier
results. In addition, they also found that large cooling occurs in the model
stratosphere caused by the increasing emission to space resulting from the
increasing CO 2 concentration. Also, the tropospheric warming is most pro-
nounced in high latitudes of the lower troposphere due to the fact that the
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vertical mixing by convection is suppressed in the stable layer of the tropo-
sphere in the polar regions. It should be noted that in none of these models,
simple one-dimensional radiative-convective models or more sophisticated
general circulation models, has allowance been made for the significant
thermal feedback effects as the cloudcover changes. Until such time as the
modeling of the cloud interaction effects can be effectively incorporated in
the model, it is very likely that the thermal effects of CO 2 changes in the real
atmosphere may be different than those predicted by the current models.

EXERCISES

4.1 Show that the spectral infrared cooling rate may be expressed by

_ Cp (aT) = nB-(T) �d�.�'�1�~�(�U�l - u) _ f,UI �a�.�'�1�~�(�~ - u') �d�n�B�v�(�~�~ du'
q ot v v 1 du a au du' ,

where T, denotes the temperature at the top of the atmosphere.

4.2 Derive the regions of linear and square root absorption directly from
Eqs. (4.27) and (4.28). Note that for weak absorption k.u « 1, while for
strong absorption « «: v - "o- (Hint: For strong absorption, let 17 =
sau/[n(v - va?].)

4.3 Compute and plot the monochromatic transmission function for a
Lorentz line as a function of (v - va)/rx for x = su/(2nrx) of 0.1, 1, and 5. Com-
pare your results with those in Fig. 4.4.

4.4 Derive Eq. (4.31) from Eq. (4.30).

4.5 Derive Eq. (4.58) from Eq. (4.56) and show that if the half widths of
lines are much smaller than their mutual distance, the transmission function
reduces to

fT,,(u) = exp( --}nSaau/6).

This is the square root approximation for the random model.

4.6 On the basis ofEq. (4.56) we define the equivalent width of the lines as

It has been found that the realistic distributions of line strengths do not
follow the Poission function expressed by Eq. (4.57), but rather are given by

peS) = (N a/S)e-s/s,
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where No is a normalization factor. Show that the transmission function is
given by

where

[(
SU)l/Z JW = 2naN 0 1 + na - 1 .

4.7 Using the square root approximation for the random model, show
that the precipitable water in a clear atmosphere (no cloud and aerosol) may
be derived from

PW = (cjm) [In(Fd.dF O,d)JJ
Z,

where c is a constant related to the band and known atmospheric parameters,
m denotes the air mass �(�~�p�r�e�s�s�u�r�e�)�, and FdAand F O,dA represent the observed
solar flux in 0.94 .urn band at the ground and at the top of the atmosphere,
respectively. This is the principle ofthe sun photometer for the measurement
of precipitable water.

4.8 Given the following vertical distribution of temperature and specific
humidity from radiosonde observations:

Pressure (mb)

1000
950
900
850
800
750
700
650
600

Temperature ("C)

12.0
10.3
8.1
4.1
0.1

-3.7
-7.5
-9.6

-11.8

Specific humidity (%)

0.82
0.49
0.43
0.42
0.41
0.30
0.20
0.09
0.04

compute the upward and downward fluxes using Eqs. (4.72) and (4.73), and
the heating rate at 800 mb. Use the empirical values for the emissivity given
in Fig. 4.8. For the convenience of calculations, perform integration by parts
for Eqs. (4.72) and (4.73),and remove the differentiation of the flux emissivity
with respect to the path length.

4.9 Utilizing the schematic diagram of the Elsasser radiation chart de-
picted in Fig. 4.10, sketch the areas corresponding to (a) the cooling rate for
a layer having the top and bottom temperatures of T 1 and Tz (T 1 < T z); (b)
the net flux densities at the surface; and (c) the net flux densities below a black
cloud whose base temperature is T b (Tb < TJ.
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Chapter 5
LIGHT SCATTERING BY
PARTICULATES IN THE
ATMOSPHERE

The earth's atmosphere contains cloud and aerosol particles whose sizes
are much larger than the wavelengths of the incoming visible sunlight. Thus,
the dipole mode of the electric field, which leads to the development of the
Rayleigh scattering theory, is not applicable. Because of the large particle
size, the incident beam of light induces high-order modes of polarization
configuration, which require more advanced treatment. This chapter presents
the scattering of electromagnetic waves by a homogeneous isotropic sphere
from the classical wave equations, the so-called Mie scattering theory (Mie,
1908). Maxwell's equations, which are the fundamentals in theoretical optics,
are introduced first. The formal solution of the scattering problem is pre-
sented following the derivation of the solution of the vector wave equation
in spherical coordinates. Far field solutions are then given, and we show how
the scattering matrix, in reference to a plane containing scattered and incident
waves, is obtained. Extinction and scattering cross sections for a single sphere
and for a polydispersion of spheres are further discussed. The final section is
concerned with the asymptotic ray-optics approach to the scattering problem.
The approximation is based on the localization principle in which the incident
beam of light may be thought of as consisting of separate rays of light
pursuing their own path. It includes discussions of Fraunhofer diffraction
and geometrical reflection and refraction leading to the explanation of the
corona, and rainbow and halo phenomena, respectively. Comparisons be-

122
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tween the formal Mie scattering theory and ray optics approximation are
further carried out to understand pronounced features that occur in the
scattered intensity and polarization. Lastly, this chapter also provides some
discussions on the scattering of light by nonspherical ice crystals that are
typically observed in cirrus clouds.

5.1 MAXWELL EQUATIONS

The state of excitation which is established in space by the presence of
electric charges is said to constitute an electromagnetic field. It is represented
by two vectors E and B, called the electric vector and magnetic induction,
respectively. It is necessary to introduce a second set of vectors, the electric
current density j, the electric displacement D, and the magnetic vector H, to
describe effects of the electromagnetic field on material objects. At every
point where the physical properties of the medium are continuous in its
neighborhood, the space and time derivatives of these five vectors can be
related by Maxwell equations:

1 aD 4n.
V x H=--+-j, (5.1)

c at c

loB
VxE=---

c at'
V' D = 4np,

V'B=O,

(5.2)

(5.3)

(5.4)

(5.5)

where t denotes time, c the velocity of light, and p the density of charge.
Equation (5.3) may be regarded as a defining equation for the electric charge
density p, and Eq. (5.4) implies that no free magnetic poles exist. Here the
Gaussian (cgs) system of units is used.

From Eq. (5.1), since V . V x H = 0, dot product operation leads to

. 1 aD
V' j = - 4n V . at·

Hence, differentiating Eq. (5.3) with respect to t, we obtain

ap .at+ V' j = 0. (5.6)

This is the equation of continuity in an electromagnetic field.
To allow a unique determination of the field vectors from a given distribu-

tion of current and charges, these equations must be supplemented by rela-
tions describing the behavior of substances under the influence of the field.
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These relations are given by

j = O"E,

D =3E,

B = IlH,

5 Light Scattering by Particulates

(5.7)

(5.8)

(5.9)

where 0" is the specific conductivity, 3 the permittivity, and 11 the magnetic
permeability.

We shall now confine our attention to the field where there are no charges
(p = 0) and currents WI = 0), and to the medium which is homogeneous so
that 3 and 11 are constants. Thus, Maxwell equations reduce to

3 oE
VxH =--

c at '
-11 oH

�V�x�E�=�~�-
c at'

V·E=O,

V·H=O.

(5.10)

(5.11)

(5.12)

(5.13)

Equations (5.10)-(5.13) will be used to derive the electromagnetic wave
equation. Note here that Eqs. (5.12) and (5.13) can be obtained immediately
from Eqs. (5.10) and (5.11) by carrying out the dot operation.

5.2 THE ELECTROMAGNETIC WAVE EQUATION
AND ITS SOLUTION

We consider a plane electromagnetic wave in a periodic field with a circular
frequency w so that we may write

On the basis of these transformations, Eqs. (5.10) and (5.11) become

VxH = ikm2E,

VxE = -ikH,

(5.14)

(5.15)

(5.16)

(5.17)

where k = Zn]A(= co]c) is the wave number denoting the propagation
constant in vacuum, A is the wavelength in vacuum, m = JB is the complex
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refractive index of the medium at the frequency w, and the permeability
J1 ;::;; 1 for air.

We now perform the curl operation on Eq. (5.17) to obtain

V x V x E = - ikV x H. (5.18)

Moreover, by noting that V . V x E = °and that V . E = 0, we get

V2E = -Pm2E. (5.19)

In a similar way we have from Eqs. (5.16) and (5.13)

V2H = -k2m2H. (5.20)

Equations (5.19) and (5.20) indicate that the electric vector and magnetic
induction in a homogeneous medium satisfy the vector wave equation

V2A + k2m2A = 0,

where A may be either E or H.
Now, if tjJ satisfies the scalar wave equation

V 2 tjJ + k2m2 tjJ = 0,

vectors Ml/J and Nl/J in spherical coordinates (r, 0, ¢) defined by

(5.21)

(5.22)

satisfy the vector wave equation defined in Eq. (5.21) subject to Eq. (5.22).
Vectors an ae, and a.p are unit vectors in spherical coordinates. To obtain
Eq. (5.24), we have used Eq. (5.29) defined below.

Assuming that u and v are two independent solutions of the scalar wave
equation defined in Eq. (5.22), then the electric and magnetic field vectors
expressed by

E = M v + iNu , (5.25)

H = m( - M, + iNv ) (5.26)

satisfy Eqs. (5.16) and (5.17). Employing Eqs. (5.23) and (5.24), E and H can
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(5.28)

(5.27)

be written explicitly as

i [i3
2(ru)

2 2 ]E = a, mk 7fT + m k (ru)

[
1 i3(rv) i i32(ru)]

+ ae r sin 8 7i¢ + mkr i3r 138

[
1 o(rv) 1 o2(ru)]

+ a</> - -;: ----ae + mkr sin 8 i3r o¢ ,

i [o2(rv) 2 2 ]
H = a, k 7fT + m k (rv)

+ a �[�_�~ i3(ru) + �~ o2(rv)]
e r sin 8 o¢ kr or 138

[
m o(ru) i i32(rv)]

+a ---+ --
</> r 08 kr sin 8 or o¢ .

The scalar wave equation defined in Eq. (5.22) in spherical coordinates is
given by

This equation is separable by letting

ljJ(r, 8,¢) = R(r)0(8)<D(¢).

(5.29)

(5.30)

Upon substituting Eq. (5.30) into Eq. (5.29) and dividing the entire equation
by ljJ(r, 8, ¢), we obtain

1 1 0 ( 2 i3R) 1 1 0 (. 130)
r2 R i3r r a;: + r2sin 8 0 138 sm 8 7iii

1 1 i3 2<D 2 2
+ r2sin2 8 <D i3¢2 + k m = O. (5.31)

If Eq. (5.31) is multiplied by r2 sin? 8, we get

[sin
2

8 �~ :r (r
2 �~�:�) + sin 8 �~ :8 (sin 8 �~�~�) + k

2m2
r
2

sirr' 8]

1 o2<D
+ <D O¢2 = O. (5.32)
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(5.35)

Since the first three terms in this equation consist of variables rand e, but
not ¢, the only possibility that Eq. (5.32) may be valid is when

1 dle:p
e:p d¢l = const = _[1, (5.33)

where we set the constant equal to - F (l denotes an integer) for mathematical
convenience. In view of Eqs. (5.32) and (5.33) it is also clear that

. 1 1 0 ( lOR) . 1 0 (. OE»
Sill e- - r - + Slll e- - Slll e-

R or or E> eo eo
+ Pmlrl sin" e- [1 = O. (5.34)

Upon dividing Eq. (5.34) by sin? e, we obtain

1 0 ( lOR) 1 1 1 1 1 0 (. OE» [1
R or r a;: + k m r + sin e E> oe Sill eae - sin1 e= O.

Thus, we must have

1 d ( dR)- - rl - + klmlrl = const = n(n + 1),
R dr dr

1 1 d ( dE» [1
sine E> de sine de - sinle = const = -n(n + 1)

(5.36)

(5.37)

(5.38)

(5.39)

(5.40)

in order to satisfy Eq. (5.35),where n is an integer. The selection ofthe constant
here is also for mathematical convenience. Rearranging Eqs. (5.33), (5.36),
and (5.37),we have

dl(rR) + [klml _ n(n + 1)] (rR) = 0,
drl rl

1 d ( dE» [ F ]sine de sine de + n(n + 1) - sinle E> = 0,

dle:p
d¢l + [le:p = O.

The single value solution for Eq. (5.40) is simply

e:p = a1cos[¢ + b, sin [¢, (5.41)

where a, and b, are arbitrary constants. Equation (5.39) is the well-known
equation for spherical harmonics. For convenience we introduce a new
variable /1 = cos eso that

d [ dE>] [ [1 ]- (1 - /11) - + n(n + 1) - -- E> = O.
du du 1 - /11

(5.42)
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The solutions of Eq. (5.42) can be expressed by the associated Legendre
polynomials (spherical harmonics of the first kind) in the form

o = �p�~�(�J�1�) = �p�~�(�c�o�s 8).

Finally, in order to solve the remaining equation (5.38), we set

(5.43)

to obtain

kmr = p, R = (I/JP)Z(p) (5.44)

(5.45)

The solution of this equation can be expressed by the general cylindrical
function of order n + 1- and is given by

(5.46)

(5.47)

Thus, the solution of Eq. (5.38) is then

I
R = fl:::::. z.; l/z(kmr).

«[kmr .

Upon combining Eqs. (5.41),(5.43),and (5.47), the elementary wave functions
at all points on the surface of a sphere, therefore, are given by

ljJ(r,8,¢) = �~�Z�n�+�1�/�z�(�k�m�r�)�p�~�(�c�O�s�8�)�(�a�[�c�o�s�l�¢ + b[sinl¢). (5.48)
ykmr

Each cylindrical function denoted in Eq. (5.47) may be expressed as a
linear combination of two cylindrical functions of standard type, e.g., the
Bessel functions I n + liZ (p) and the Neumann functions N n + 1/Z(P). We define

(5.49)

The functions IjJn are regular in every finite domain of the p plane including
the origin, whereas the functions Xn have singularities at the origin p = 0
where they become infinite. Hence, we may use ».: but not Xn to represent
the wave inside the sphere. On utilizing the definitions in Eq. (5.49),Eq. (5.47)
can be rewritten in the form

(5.50)

where en and d; are arbitrary constants. Equation (5.50) now represents the
general solution of Eq. (5.38).
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It follows that the general solution of the scalar wave equation (5.29)
then can be expressed by

00 n

nj;(r, e, ¢) = L I �p�~�(�c�o�s e) [Cnt/Jn(kmr) + dnXn(kmr)]
n=O 1=-n

(5.51)

Note that the electric and magnetic field vectors of the electromagnetic
waves subsequently can be derived from Eqs. (5.27) and (5.28).

Moreover, when CII = 1, and d; = i, we note that

t/J,,(p) + iXn(P) = �.�J�n�p�/�2�H�~�2�~ 1/2(P) = (,,(p), (5.52)

where �H�~�2�~ 1/2 is the half integral order Hankel function of the second kind.
It has the property of vanishing at infinity in the complex plane and is
suitable for the representation of the scattered wave.

5.3 FORMAL SCATTERING SOLUTION

Having the vector wave equation solved, we may now discuss the scatter-
ing of a plane wave by a homogeneous sphere. For simplicity, we assume
that outside the medium is vacuum (m = 1), that the material of the sphere
has an index of refraction m, and that the incident radiation is linearly
polarized. We select the origin of a rectangular system of coordinates at the
center of the sphere, with the positive Z axis along the direction of propaga-
tion of the incident wave. If the amplitude of the incident wave is normalized
to unity, the incident electric and magnetic field vectors are

Hi = a e- ikz
y , (5.53)

where ax and ay are unit vectors along the X and Y axes, respectively.
The components of any vector, say a, in the Cartesian system may be

transformed to the spherical polar coordinates (r, e, ¢) defined by

x = r sin ecos ¢, y = r sin esin ¢, z = rcos e. (5.54)

(5.55)

According to the geometrical relationship shown in Fig. 5.1, we find

a, = ax sin ecos ¢ + aysin esin ¢ + a, cos e,
a, = ax cos ecos ¢ + aycos esin ¢ - az sin e,
aq, = -axsin¢ + aycos¢,

where ax, ay, and a, are unit vectors along x, y, and z, respectively, and an
ae, and aq, are unit vectors in spherical coordinates.
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y

X

Fig. 5.1 Transformation of rectangular to spherical coordinates. S is the Poynting vector,
and a is an arbitrary unit vector.

Thus, the electric and magnetic field vectors of the incident wave are

�E�~ = e - ikr cos 8sin 0 cos cjJ,

�E�~ = e-ikrcos8cosOcoscjJ,

�E�~ = _e-ikrcos8sincjJ,

�H�~ = e-ikrcos8sinOsincjJ,

�H�~ = e-ikrcos8cosOsincjJ,

�H�~ = e - ikr cos 8cos cjJ.

(5.56)

(5.57)

(5.58)

On the basis of Bauer's Formula (Watson, 1944) the first factor on the
right-hand side of this equation may be expressed in the following different-
iable series of Legendre polynomials

e-ikrcos8= f (-it(2n+ l)lfin(kr) Pn(cosO),
n=O kr

where lfin is defined in Eq. (5.49). Also we have the mathematical identities

'k n 1 a 'k ne-, r cos" sin 0 = __ (e -r z r cos ")
ikr ao '

P6(cosO) = O.

(5.59)

(5.60)

Equation (5.60) relates the Legendre polynomial P; with the associated
Legendre polynomial �P�~�.
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(5.61)

(5.68)

To determine the potentials u and v, only one of the components in Eq.
(5.27) is needed. The first of them is (m = I)

. '. i [a 2
(ru

i
) . ]�E�~ = e-lkrcos8sm8coscP = k aT + k 2(ru') .

In view of Eqs. (5.58)-(5.60), we have

. I 00

e-'krcos8sin8coscP = (kr)2 �n�~�l (-i)n-l(2n + �1�)�l�/�J�n�(�k�r�)�P�~�(�c�o�s�8�)�c�o�s�c�P�· (5.62)

Accordingly, we take a trial solution in Eq. (5.61) in a series of a similar
form

1 x

ru: = k �n�~�l �r�J�.�n�l�/�J�n�(�k�r�)�P�~�(�c�o�s 8)cos cP· (5.63)

Upon substituting Eqs. (5.62) and (5.63) into Eq. (5.61) and comparing
coefficients, we obtain

In Eq. (5.50), since Xn(kr) become infinite at the origin through which the
incident wave must pass, we may let en = 1, and d; = O. Hence

l/Jn(kr) = rR (5.65)

is a solution of Eq. (5.38) (with m = 1)

d
2

l/Jn + [k2 - �~�J l/J = 0 (5.66)dr2 r2 n

provided that rJ. = n(n + 1). Comparing Eq. (5.66) with (5.64), we find

2n + 1
o; = (-it n(n + 1)" (5.67)

Utilizing the similar procedures, Vi can be derived from Eq. (5.28). Thus, for
incident waves outside the sphere, we have

. 1 00 2n + 1
ru' = -k I (_i)n ( 1) �l�/�J�n�(�k�r�)�P�~�(�c�o�s�8�)�c�o�s�c�P�,

n= 1 n n +
. 1 00 2n + 1 .

rv'=- I (-it ( �1�)�l�/�J�n�(�k�r�)�P�~�(�c�o�s�8�)�s�m�c�P�.
k n = l nn+

In order to match ui and Vi with those of the internal and scattered waves
whose potentials already have been derived in Eq. (5.51), the latter must be ex-
pressed in a series of similar form but with arbitrary coefficients. For internal
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(5.69)

waves, because the function Xn(kmr) becomes infinite at the origin, only the
function l/Jn(kmr) may be used. Thus, for internal waves we have

t 1 �~ . n 2n + 1 1
ru =-k 1... (-I) ( 1)Cnl/Jn(kmr)Pn(cos8)cosrjJ,

m n=l nn+

t 1 �~ . n 2n + 1 1.
rv = -k 1... (-I) ( 1)dnl/Jn(kmr)Pn(cos 8)SIn rjJ.

m n=l nn+

For scattered waves, they must vanish at infinity, and the Hankel functions
expressed in Eq. (5.52) will impart precisely this property. Thus, for scattered
waves we have

S 1 CD • n 2n + 1 1
ru = --k L (-I) ( 1) �a�n�~�n�(�k�r�)�P�n�(�c�o�s�8�)�c�o�s�r�j�J�,

n= 1 n n +
S 1 CD • n 2n + 1 1 .

rv = --k L (-I) ( �1�)�b�n�~�n�(�k�r�)�P�n�(�c�o�s�8�)�s�I�n�r�j�J�.
n= 1 n n +

(5.70)

The coefficients �~�,�b�n�, Cn, and d; have to be determined from the boundary
conditions at the surface of the sphere. The boundary conditions are that the
tangential components of E and H be continuous across the spherical surface
r = a. So we have

�H�~ + He = �H�~�,

�H�~ + H'¢ = Ht,p,
at r = a. (5.71)

In view of Eqs. (5.27), (5.29), and (5.68)-(5.70), it is evident that apart from
common factors and differentiations with respect to 8 and rjJ, which are the
same for the wave inside and outside the sphere, both of the field components
Ee and E<J> contain the expressions v and o(ru)/m or. It is also clear that com-
ponents He and H<J> contain mu and o(ru)/or. Equation (5.71) implies that
these four expressions have to be continuous at r = a. Consequently,

0.10
;) [r(u' + US)] = - -;;- (rd),
or m ur

o. 0
- [r(v l + VS)] = - (rvt

) ,or or

ui + US = mu',

(5.72)

From these equations, it is now apparent that

m[ �l�/�J�~�(�k�a�) - �a�n�~�~�(�k�a�)�] = �c�n�l�/�J�~�(�k�m�a�)�,

�[�l�/�J�~�(�k�a�) - �b�n�~�~�(�k�a�)�] = �d�n�l�/�J�~�(�k�m�a�)�,

[l/Jn(ka) - anUka)] = cnl/Jn(kma),

m[l/Jn(ka) - �b�n�~�n�(�k�a�)�] = dnl/Jn(kma),

(5.73)
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where the prime denotes differentiation with respect to the argument. Upon
eliminating c; and dn , we obtain the coefficients for the scattered waves in
the forms

�t�/�t�~�(�y�)�t�/�t�n�(�x�) - �m�t�/�t�n�(�y�)�t�/�t�~�(�x�)a = --"--- - -"-'---"-"------
n �t�/�t�~�(�y�)�~�n�(�x�) - �m�t�/�t�n�(�y�)�~�~�(�x�) ,

b = �m�t�/�t�~�(�y�)�t�/�t�n�(�x�) - �t�/�t�n�(�y�)�t�/�t�~�(�x�)
n �m�t�/�t�~�(�y�)�~�,�,�(�x�) - �t�/�t�n�(�y�)�~�~�(�x�) ,

(5.74)

where x = ka, and y = mx. As for c, and dn , fractions with the same respective
denominators as those of an and b; are found with m[ �t�/�t�~�(�x�)�~�n�(�x�) - �t�/�t�n�(�x�)�~�~�(�x�)�J
as a common numerator. At this point, solution of the scattering of electro-
magnetic waves by a sphere whose radius is r = a and whose index of refrac-
tion is m is complete. The electric and magnetic field vectors expressed in
Eqs. (5.27) and (5.28) at any point inside or outside the sphere are now ex-
pressed in terms of the known mathematical functions given by Eqs. (5.68)-
(5.70). We have assumed up to this point that the suspending medium is a
vacuum for simplicity. Now let the outside medium and the sphere have the
refractive indices m2 (real part) and ml (maybe complex), respectively.
Replacing the m by m1/m2 and the wave number k by m2 k (vacuum), the results
in Eq. (5.74) can be generalized to cases where a sphere is suspended in a
medium.

5.4 THE FAR FIELD SOLUTION AND
EXTINCTION PARAMETERS

We shall now consider the scattered field at very large distances from the
sphere. We note that for practical applications, all light scattering observa-
tions are normally carried out in the far-field zone. In the far field, the Hankel
functions denoted in Eq. (5.52) reduce to the form

kr» 1. (5.75)

With this simplification Eq. (5.70) becomes

ie - ikr cos 4> 00 2n + 1
ru' �~ - k I -(--1-) anP�~ (cos 8),

n= 1 n n +
ie- ikr sin 4> 00 2n + 1

rvS �~ - k I ( �b�n�P�~�(�c�o�s 8).
n=lnn+1)

(5.76)

The three components of the electric and magnetic field vectors in Eqs. (5.27)
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and (5.28) then are given by

�E�~ = �H�~ �~ 0,
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S _ s �~�~ -r ikr S'" �~ 2n + 1 [ �d�P�~�(�c�o�s�e�) b �p�~�(�C�O�S�e�)�J
Ee - Hq; �~ k e co 'f-' L. ( 1) an de + n . e 'r n = 1 n n + SIll

�-�£�S�-�H�S�~�~ -ikr' .» 2n+1 [ �p�~�(�c�o�s�e�) �h�d�P�~�(�C�O�S�e�)�J
q; - e �~ k e SIll 'f-' L. ( 1) an . e + n de .r n=lnn+ SIll -

(5.77)

We find that the radial components �E�~ and �H�~ may be neglected in the
far-field zone. To simplify Eq. (5.77), we define two scattering functions of the
forms

(5.78)

where

(5.79)

(5.80)

Thus, we may write

i 'kES = --e-' rcos"'S (e)B kr 'f-' 2 ,

- �E�~ = ..'. e- ikr sin ¢Sl (e).
kr

These fields represent an outgoing spherical wave with amplitude and
state of polarization as functions of the scattering angle e. It is convenient
to define the perpendicular and parallel components of the electric field as
E, and Ez , respectively. In reference to Fig. 5.2, the scattered perpendicular
and parallel electric fields are given by

�E�~ = -E¢, (5.81 )

Also, the normalized incident electric vector [see Eq. (5.53)] may be decom-
posed into perpendicular and parallel components as

E; = e- ikz cos ¢. (5.82)
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(5.83)

X

Fig. 5.2 Decomposition of the incident and scattered electric vectors into perpendicular and
parallel components.

Equation (5.80)can then be expressed by

[EI] = e-ikr+ikz [52(8) 0 ][Ei
]

�E�~ ikr 0 51(8) �E�~�'
Equation (5.83) is the fundamental equation for the study of radiation
scattered by spheres including polarization.

The scattered intensity components in the far-field zone can now be
written in terms of the incident intensity components in the form

(5.84)

where

(5.85)

and they are called the intensity functions for the perpendicular and parallel
components, respectively. Each of these components of the scattered light
can be thought of as arising from that component of the incident beam
polarized in the same direction. The computational problem involved in Mie
scattering is to compute i1 and i2 as functions of the scattering angle, the
index of refraction m, and the particle size parameter x = 2na/X

In the far-field zone, we would like to evaluate the reduction of the incident
energy due to the absorption and scattering of light by a sphere. For this
purpose we consider incident light polarized linearly in the perpendicular
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direction. From Eq. (5.83) the scattered electric field is given by

(5.86)

(5.87)

(5.90)

Next, we consider a point (x, y,z) in the forward direction, i.e., e �~ O. In the
far field, since x(y) « Z, we have in the forward direction

XZ + yZ
r = (XZ + yZ + ZZ)I/Z �~ Z + ---,-----

2z

Upon superimposing the incident and scattered electric fields in the forward
direction, we obtain

E i + ES �~ E i {I + 5 1(0) e-ik(X2+Y2)/ZZ} (5.88)
r r �~ r ikz .

The far-field combined flux density in the forward direction then is
proportional to

�I�E�~ + EW �~ �I�E�~�l�z {I + :z Re[51;0) e-ik(X2+Y2)/ZZ]}, (5.89)

where Re[ ] represents the real part of the argument (note that z »x and y).
Integrating the combined flux density over the cross section area of a

sphere whose radius is r = a, we obtain the total power of the combined
Image:

I If I i 51 z
Z�I�E�~�l�z Er+Er dxdy=na +ae,

where the first term on the right-hand side of Eq. (5.90) represents the cross
section area of the sphere. The physical interpretation of the second term ae

is that the total light received in the forward direction is reduced by the
presence of the sphere, and the amount of the reduction is as if an area ae of
the objective had been covered up. The double integral over dx dy, by which
a e is defined, contains two Fresnel integrals, and if the limits are assumed to
extend to 00, we get

00 2nzII e-ik(x2+y2j/ZZdxdy = T'
-00

Thus, the extinction cross section is

We note here that in the forward direction

(5.91)

(5.92)

00

51(0) = 5z(0) = 5(0) = t L (2n + I)(an + bn)· (5.93)
n=1



5.4 Far Field Solution and Extinction Parameters 137

The fact that there is only one S(O) is because of the symmetry of the forward
scattering in which the extinction is independent of the state of polarization
of the incident light. It should be noted that Eq. (5.92) is valid only when the
sphere is isotropic and homogeneous. Furthermore, we define the extinc-
tion efficiency for a sphere with a radius of r = a as

(J J 00

Qe �=�~�(eZ) = -z L (2n + I) Re[an + bn ] ,
na x n=l

(5.94)

where x = ka as denoted earlier, and it is called the size parameter.
The scattering cross section can be derived by the following procedures.

From Eq. (5.80), the flux density of the scattered light in an arbitrary direc-
tion is given by

(5.95)

with F o = I (unit incident amplitude). The total flux (or power) of the scat-
tered light is therefore

(5.96)

where sin e ded¢ is the differential solid angle dO., and r Z dO. denotes the
differential area. Hence, the scattering cross section may be defined as

(5.97)

In a similar way as in the extinction case, we define the scattering efficiency
for a sphere

c, = (Jsz = �~ In [it (e) + iz(e)] sin ede.
tta x 0

(5.98)

if n =1= m

We note (see Appendix E) the following orthogonal and recurrence pro-
perties of the associated Legendre polynomials:

{

O'
in �(�d�P�~ dP;;, I I I) . (5.99)

Jo de de +sinzePnPm smede= 2n(n+l)(n+I)! if n=m
2n+1 (n-l)!'

and

in �(�~�~ dP;;, + �~�;�;�, �d�P�~�)�s�i�n�e�d�e = �[�p�~�(�e�)�p�;�;�,�(�e�)�]�~ = 0. (5.100)
Jo sin e de sm e de
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The scattering efficiencycan be evaluated with the help ofthese two equations
to yield

(5.101)

Finally, the absorption cross section and efficiency of a sphere can be
calculated from

(5.102)

For an absorbing sphere, it is convenient to define the index of refraction as
m = m; - im., with m, and mi representing the real and imaginary parts of
the refractive index, respectively.

Figure 5.3 shows the scattering efficiency factor Qsas a function of the size
parameter x for a real index of refraction of 1.33 with several values of the
imaginary part. For mi = 0, i.e., a perfect reflector, there is no absorption so
that Qs = Qe' Qs in this case shows a series of major maxima and minima and
ripples. The major maxima and minima are due to interference of light
diffracted and transmitted by the sphere, whereas the ripple arises from edge

5 10 50 100

x = 21ro/.\
Fig. 5.3 Efficiency factor for scattering, Q" as a function of the size parameter x = 'Ina] A.
The refractive index in m, = 1.33, with results shown for four values of m; (after Hansen and
Travis, 1974).
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(5.103)

rays that are grazing and traveling the sphere, spewing off energy in all
directions. Qs(or Qe) increases rapidly when the size parameter reaches about
five and approaches an asymptotic value of two. This implies that a large
particle removes from the incident beam exactly twice the amount of light
that it can intercept. Physically, the removal of the incident light beam in-
cludes the diffracted component, which passes by the particle, plus the light
scattered by reflection and refraction within the particle to be discussed in
Section 5.6. Both the ripples and the major maxima and minima damp out
as absorption within the particle increases.

For nonabsorbing cases, the scattering efficiency factor may be expanded
in terms of the expansion of the scattering coefficients an and bn . It is given
by (Penndorf, 1962)

_8x4 (m; - 1)2[ Q 2(m; - I) 4{3 �m�~ + 41m; - 284m; + 284Q - - -- 1+ x -- + x - �-�-�-�-�'�-�-�-�-�-�-�'�-�-�-�,�~�~�-�=�-�-�-�-
s 3 m;+2 5 m;+2 175 (m; + 2)2

+ �9�~�0 (;;;:23Y[15 + (2m; + 3)2J} + .. J
The leading term is the dipole mode contribution, i.e., the Rayleigh scat-
tering. This term is the same as that shown in Eq. (3.65) if na' is divided by
the scattering cross section in that equation; note that N, = IjV where
V = !na3 represents the volume.

5.5 THE SCATTERING PHASE MATRIX

On the basis of the Stokes parameters defined in Eq. (3.42), we may now
express the incident and scattered electric vectors given by Eq. (5.83) in terms
of the intensity components. Letting the subscript 0 denote the incident
component, it is straightforward to show that

(5.104)

where

(5.105)
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and
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M 11 = 2k;rZ [Sj(8)S!(8) + Sz(8)Si(8)],

1
M 12 = 2kzrz �[�S�z�(�8�)�S�~�(�8�) - Sj(8)Sf(8)],

M 3 3 = 2k;rZ [Sz(8)Sf(8) + �S�l�(�8�)�S�~�(�8�)�]�,

-M3 4 = k; z �[�S�j�(�8�)�S�~�(�8�) - Sz(8)Sf(8)].
2 r

(5.106)

M here is called the transformation matrix of a single sphere. For incident
unpolarized light (Qo = U0 = Vo = 0), Eq. (5.104) reduces to Eq, (5.84).

In conjunction with the transformation matrix, we can define a parameter
called phase matrix in such a way that

and that

M(8) = CP(8) (5.107)

fZ" f" P11(8) sin8d8d1J = 1. (5.108)
Jo Jo 4n

On the basis of Eqs. (5.107) and (5.108), it is evident that

C = �~ fo" M 11 (8)sin 8 d8 = 4k;rZ fo" [ij (8) + iz(8)] sin 8 de. (5.109)

According to the definition of the scattering cross section in Eq, (5.97), the
constant of proportionality C is

C = O"j(4nrZ
) . (5.110)

Thus,

(5.11la)

(5.1 lIb)

(5.111c)

(5.1 lId)
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where

i. = slsf = [SIIZ,

iz = SzS'i = ISz[Z,

i3 = SzSr,

i4 = SIS!.
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(5.112a)

(5.112b)

(5.l12c)

(5.l12d)

The scattering phase matrix for a single homogeneous sphere is then

(5.113)

In general, if no assumption is made about the shape and position of the
scatterer, the scattering phase matrix consists of 16 independent elements. For
a single sphere, it is clear that the independent elements reduce to only four.
Graphs of PI and Pz. as functions of the scattering angle for a real part of
the refractive index of 1.5 and a size parameter of 60, are shown in Fig. 5Aa.
The phase functions of a Mie particle are characterized by the strong forward
scattering. Also, the large back scattering is noticeable. The scattering pat-
terns consist of rapid fluctuation due to interference effects, which depend
upon the size parameter. Clearly, the scattering behavior of a Mie particle
differs greatly from that of a Rayleigh molecule as described in Section 3.7.
Since a spherical particle is symmetrical with respect to the incident light,
the scattering pattern is also symmetrical in the intervals (0°,180°) and (180°,
360°). Thus, we may present the Mie scattering phase function in a polar
diagram similar to the one depicted in Figs. 3.13 and 104. Figure 5Ab illus-
trates graphs of P 3 3 and P 34 as functions of the scattering angle. P 3 3 has the
same behavior as those of PI and Pz, but P34 shows negative values resulting
from the differences of the cross components of S I and Sz .

All the developments discussed in the previous sections are concerned with
the scattering of electromagnetic waves by a single homogeneous sphere. We
shall now extend these developments to a sample of cloud or aerosol particles
so that practical equations for the calculations of extinction parameters and
phase functions may be derived. We assume that particles are sufficiently far
from each other and that the distance between them is much greater than the
incident wavelength. Thus, it is possible to study the scattering by one particle
without reference to the other ones. Consequently, intensities scattered by
various particles may be added without regard to the phase of the scat-
tered waves. This particular scattering phenomenon is called independent
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Fig. 5.4 (a) The phase functions P [ and P2 as functions of the scattering angle for a refractive
index m, = 1.5 and a size parameter x = 60. (b) The phase functions P33 and P34 as functions
of the scattering angle for a refractive index me = 1.5 and a size parameter x = 60.

scattering. It is in the context of the independent scattering concept that the
following discussions are based.

We consider a sample of cloud particles whose size spectrum can be
described by dn(a)/da (in units, say, cm - 3 ,urn - t). Assume that the size range
of particles is from at to az; then the total number of particles is given by

N = faz dn(a) da. (5.114)
Jal da

With the particle size distribution prescribed, we can define the extinction
and scattering parameters for a sample of particles. The extinction and
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Fig. 5.4 (Continued)

scattering coefficients (in units of per length) are defined respectively, as

(5.115)

S
az dn(a)

f3s = aJa) -d- . da.
al a

(5.116)

Lastly, we define the single scattering albedo for a sample of particles as

(5.117)
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It is apparent that the single-scattering albedo represents the percentage of
light beam which will undergo scattering in a single scattering event. The
remaining part of this section defines the phase matrix for a sample of
particles.

Since the phase matrix is a nondimensional physical parameter denoting
the scattered intensity and polarization state for a sample of particles in the
particle range (a j , a1 ), it is independent of the particle size distribution
dn(a)jda. Hence, we rearrange Eq. (5.llla) and perform particle size integra-
tion to obtain

P 11 ra2 dn(a) 1 ra2. . dn(a)
4n Jal (Js �~ da = 2k1 Jal [11(a) + ll(a)] �~ da.

From Eq. (5.115) we find

p 11 1 ra2. . dn(a)
4n = 2k 1 f3s Jal [11(a) + ll(a)] �~ da.

Similarly, we have

(5.118)

(5.119)

(5.120)

(5.121)

(5.122)

Note here that ij (j = 1,2,3,4) are functions of the particle radius a, the index
of refraction m, the incident wavelength }" and the scattering angle e.

5.6 RAY OPTICS

The laws of geometrical optics may be used to compute the angular dis-
tribution of light, which is scattered when a plane electromagnetic wave is
incident on a particle much larger than the wavelength of the incident light.
Such a computation is an approximation based on the assumption that the
light may be thought of as consisting of separate localized rays which travel
along straight-line paths; it is an asymptotic approach which becomes in-
creasingly accurate in the limit as the size-to-wavelength ratio approaches
infinity. Processes involving geometrical optics include rays externally re-
flected by the particle and rays refracted into the particle; the latter rays may
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0 Diffraction

External reflection

2 Two refractions
Light rays

3 One interna I ref lect ion

4 Two internal ref lee t ions

Fig. 5.5 Representations of light rays scattered by a sphere according to ray optics.

be absorbed in the particle, or they may emerge from it after possibly suffering
several internal reflections. Hence the total energy scattered and absorbed by
the particle is equal to that impinging on the cross section of the particle
presented to the incident beam.

Particles much larger than the incident wavelength also scatter light by
means of diffraction, which removes energy from the light wave passing by
the particle. The diffraction is concentrated in a narrow lobe around the
forward direction, and like geometrical reflection and refraction, it contains
an amount of energy equal to that incident on the cross section of the particle.
In the far field, the diffracted component of the scattered light may be approx-
imated by Fraunhofer diffraction theory. The diffraction pattern depends
only upon the shape of the cross section of the particle.

We use the term ray optics to describe both geometrical reflection and
refraction plus Fraunhofer diffraction. Figure 5.5 illustrates the geometrical
configuration for different contributions to light scattered by a large sphere.
In the following subsections, we shall discuss the theoretical foundations for
the treatment of geometrical optics and diffraction.

5.6.1 Diffraction: Corona

We will now present the theoretical development for diffraction on the
basis of Babinet's principle, which states that diffraction pattern in the far
field, i.e., Fraunhofer diffraction, from a circular aperture is the same as that
from an opaque disk or sphere of the same radius. Let the Z axis be in the
direction of propagation of the incident light, and let the wave disturbance
be sought at a distance point P from the geometrical aperture A. In reference
to Fig. 5.6, the distance from P to point O'(x, y) on the aperture area and the
origin 0 are denoted as rand ro, respectively. Thus, the phase difference of the
disturbance at P for waves passing through points 0 and 0' is given by (see
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Fig. 5.6 Diffraction by a circular aperture with a geometrical area A. The geometrical rela-
tionship between the phase difference and the coordinate systems is also shown.

Fig. 5.6)

(5 = k(r - ro) = k(xcos¢ + ysin¢)sin8, (5.123)

where k = 2n/A, and A is the wavelength.
In the far field the light wave disturbance at P can be derived from the

Fraunhofer diffraction theory and is given by

iu.; II ·ku = -----;;- e- 1 "dx dy.
P rs. A

(5.124)

Here Uo represents the disturbance in the original wave at point 0 on the
plane wave front whose wavelength is A. Upon utilizing Eq. (5.123), it follows
that

u = _iUOe-ikro II e-ik(xcos4>+Ysin4>lsinOdxdy.
P rA A

(5.125)

For a circular aperture, we may change rectangular coordinates to polar
coordinates (p, lj;) to give x = p cos lj; and y = p sin lj;. Thus,

u = _iUOe-ikro fa f2"e-ikPCOS(i/J-4>lsinOpdpdlj;.
P rA Jo .lo (5.126)
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We first note that the zero-order Bessel function is defined by

This gives

147

(5.127)

(5.128)

In addition there exists a well-known recurrence relation involving Bessel
functions

grvmg

f: y'Jo(y')dy' = yJ1(y)·

From Eqs. (5.128) and (5.130), it follows that

_ iuo _ ikrr, 2J 1(x sin e)
up - - -} e A . e 'r . x sm

(5.129)

(5.130)

(5.131)

where the geometrical shadow area A = na 2 and the size parameter x = ka.
Hence, the scattered intensity in terms of the incident intensity 10 = luol 2 is
given by

(5.132)

(5.134)

where the angular intensity function for diffraction analogous to the Mie
scattering theory for a single sphere is

i = x
4

�[�2�J�l�(�~�S�i�n�e�)�J�2�. (5.133)
p 4 x sin e

It is clear that diffraction depends only on the particle size parameter and
is independent of the index of refraction.

Figure 5.7 shows a plot of D2 = [2J 1(y)/y]2 versus y. It has a principal
maximum of 1 at y = 0 (i.e., e = 0), and with increasing y it oscillates with
gradually diminishing amplitude. Note that eis the scattering angle denoting
the angle between the incident and scattered waves. When J 1 (y) = 0, then
D2 = 0; this gives the minima of the diffraction pattern. The positions of the
maxima are given by values of y that satisfy

d
dy {J 1(y)/y} = o.
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Fig.5.7 The relative diffraction pattern as a function of y = xsin&.

Table 5.1 lists these maxima and minima. The minima or dark rings can be
approximated by

or(n= 1,2, ... )

y = ka sin 8 = (n + O.22)n

sin 8 = (n + O.22)Xj(2a).

(5.135)

(5.136)

The first maximum at y = 0 usually is obscured by the finite size of the source.
Thus, the first observable maximum diffraction ring is when y = 5.136.

The diffraction theory developed above for a single sphere can be employed
to explain the optical phenomenon known as the corona. The corona is
associated with the illumination frequently observed near the sun, the moon,

TABLE 5.1 The First Few Maxima
and Minima of the Diffraction Pattern

y

o
3.832
5.136
7.016
8.417

10.174
11.620

1
o
0.0175
o
0.0042
o
0.0016

Max or min

Max
Min
Max
Min
Max
Min
Max
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or other luminous objects when they are seen through a mist or thin cloud.
It is usually in the form of circles, or near circles, concentric with the luminous
body and situated within a few layers around it. The corona is usually very
bright and of a white or bluish-white color with a reddish or brownish tinge.
The colors are diluted with a great deal of white light. As many as four corona
rings have been recorded, though only the first ring has been frequently
observed around the sun and the moon. The condition during which the
corona may be produced by thin clouds is when such thin clouds are com-
posed of particles of almost equal size, which is said to be monodisperse.
Applying the resulting diffraction theory one may evaluate the angular posi-
tions of the corona if the wavelength of the visible sunlight and the mean
particle size are known. Based on Eq. (5.136), we see clearly that red color,
having a longer wavelength, is to be observed in the outer ring of the corona
with blue and green colors inside the ring. Also it is evident that the angular
width depends on the particle diameter. These theoretical analyses are in
agreement with observations.

5.6.2 Geometrical Reflection and Refraction:
Rainbows and Halos

When a plane wave falls on to a boundary between two homogeneous
media of different optical properties, it is split into two waves; a transmitted
wave proceeding into the second medium, and a reflected wave propagating
back into the first medium. From the part of the wave that hits the plane, we
can isolate a narrow beam much smaller as compared to the surface. Such
a beam is called a ray as it is used in geometrical optics. Let V j and Vz be the
velocities of propagation in the two media (v j > vz), and let 8j and 8t be the
angles corresponding to the incident and refracted waves. Referring to Fig.
5.8, we find

sin 8Jsin 8t = vdvz = m, (5.137)

where m is the index of refraction for the second medium with respect to
the first medium. This is Snell's law, which relates the incident and refracted
angles through the index of refraction.

Let Ei be the electric vector of the incident field. As shown in Fig. 5.8, the
components of the incident electric field vector perpendicular (r) and parallel
(I) to the plane containing the incident and refracted fields mapped in rec-
tangular coordinates are

�E�~ = -E)cos8 j ,

�E�~ = �E�~�,

�E�~ = E)sin8 j •

(5.138)
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Fig. 5.8 Illustration of the reflection and refraction of a plane wave. The choice of the positve
directions for the parallel components (I) of the electric vectors is indicated in the diagram.
The perpendicular components are at right angles into the plane of reference.

From the Maxwell equation, the relation between the electric and magnetic
vectors can be shown to be H = ..[8 a x E, or E = - Jfif- a x H, where a is
an unit vector in the direction of propagation. Thus, the components of the
magnetic vector are (/1 �~ 1, m = ..[8)

�H�~ = �-�E�~�c�o�s�8�i�m�l�'

�H�~ = - E!mu (5.139)

�H�~ = �E�~�s�i�n�8�i�m�l�>

where m, is the refractive index of the first medium with respect to vacuum.
Similarly, if E' and E' denote the transmitted (refracted) and reflected

electric vectors, respectively, we find the relations

�E�~ = -Elcos8t , �H�~ = �-�E�~�c�o�s�8�t�m�z�,

�E�~ = �E�~�, �H�~ = -Elmz, (5.140)

E; = El sin 8p H; = �E�~ sin 8l mz,

�E�~ = -Er cos 8n

�E�~ = �E�~�,

�E�~ = Ei sin 8n

�H�~ = �-�E�~�c�o�s�8�r�m�"

�H�~ = -Erm"
�H�~ = �E�~ sin 8rm"

(5.141)
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where mz is the refractive index ofthe second medium with respect to vacuum,
and we note that 8r = 1800

- 8i.
The boundary conditions require that the tangential components of E and

H be continuous. Hence we must have

�E�~ + �E�~ = �E�~�,

�E�~ + �E�~ = �E�~�,

�H�~ + �H�~ = �H�~

�H�~ + �H�~ = �H�~�.
(5.142)

Upon substituting into Eq. (5.142) for all the components, we obtain four
relations:

�E�~�+�E�~�=�E�;�,

m1 cos �8�J�E�~ - �E�~�) = mz cos 8tE;,

m1(E) + ED = mzEl·

(5.143a)

(5.l43b)

(5.143c)

(5.l43d)

By virtue of these equations, the solutions of the components of the reflected
and transmitted waves in terms of the incident wave are

where the amplitude coefficients

cos8j - mcos G,
R 1 = ,

cos8i + m cos H,

2 cos 8j
T 1 = ,

cos P, + mcoeil,

R _mcos8j-cos8t

z - m cost), + cos 8t'

2 cos 8iT z = ----=-------,--
m cost), + cos8t'

(5.145)

(5.146)

with m = mzjm j , the refractive index of the second medium with respect to
the first medium. Equations (5.145) are called Fresnel formulas, which were
first derived by Fresnel in 1823. When absorption is involved, the amplitude
coefficients become much more complicated, and they can be derived by
means of straightforward mathematical analyses (see Exercise 5.8).

In regard to the energy, from the Poynting vector equation denoted in
Eq. (3.33) and the relation between E and H stated previously, we find that
the flux density lSI = (c/4n)J2IElz (/1 = 1). Thus, the amount of energy inci-
dent, reflected, and transmitted on a unit area of the boundary per unit time is

F i = ISilcos8 j = (cj4n)mjIEiIZCOS8j,

F' = Isrlcos 8i = (cj4n) mjlE'lz cos 8i,
F' = Istlcos 8t = (c/4n)mzIEtIZcos8t·

Therefore, the reflected and transmitted portions of the energy in two polar-
ization components, with respect to the incident energy, are proportional to
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RI,2 and Ti,2m cos 8t/cos 8i . It can be easily verified that Ri,2 + Ti,2mcos 8tl
cos 8i = 1, which is in agreement with the energy conservation principle.
Consequently, the transmitted (or refracted) parts of the energy simply can
be written as (1 - Ri,2)'

Consider now a large sphere, and let It = 0 for the external reflection,
It = 1 for two refractions, and jz �~ 2 for internal reflections. We define the
amplitude coefficients

8 1 = R 1

81 = (I - Ri) 1/2( - R1)!'- l (l - Ri)l/2
for jz = 0

for jz �~ 1,
(5.147)

(5.148)

where - R 1 denotes the amplitude coefficient for an internal reflection.
These definitions also apply to index 1(2) for other polarization.

Next we discuss the effect of the curvature on the reflected and refracted
intensity. We consider a finite pencil of light characterized by d8; and d¢ with
¢ being the azimuthal angle. Let 10 denote the incident intensity of the light
pencil plane-polarized in one of the two main directions. Thus, the flux of
energy contained in this pencil is I oa2 cos 8i sin 8j d8i dcjJ, where a denotes the
radius of the sphere. This flux of energy is devided by successive reflection
and refraction. The emergent pencil spreads into a solid angle sin 8 d8 d¢
at a large distance r from the sphere. As a result, the scattered intensity is
given by

d I oa2 cos 8 j sin 8j d8j d¢
I, = r2sin8d8d¢

The pencil of light emergent from the sphere is characterized by a small
range d8 around the scattering angle 8. In reference to Fig. 5.9, the total
deviation from the original direction is

(5.l49a)

The scattering angle defined in the interval [0, nJ may be expressed by

8' = 2nn - q8,

where n is an integer and q = + 1 or -1. Hence,

(5.149b)

(5.150)d8 -ld8'[- 2 _ 2jz cos8 j

d8
j

- d8
i

- mcos 8
t

'

We define the divergence factor due to the curvature effect in the form

cos 8i sin 8i

D = sin8d8ld8 j '
(5.151)
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Fig. 5.9 (a) Geometrical reflection and refraction by a sphere and the definition of the devia-
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spherical water drop (after Humphreys, 1954).
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Thus from Eq. (5.148), which is also valid for index I, we obtain

In comparison with Mie scattering theory we find

i 1 , 2 = x2ei,2D.

(5.152)

(5.153)

5.6.2.1 Rainbows The rainbow is probably the best-known phenomenon
of atmospheric optics. It has inspired art and mythology in all peoples and
has been a challenge to mathematical physicists. We see a rainbow in the
sky usually on summer afternoons after a rainshower is over. Rainbows are
produced by the geometrical reflections ofthe sun's rays within the raindrops.
The sun's rays undergo minimum deviation within the drop and generate
the maximum intensity at a specific angle that is much stronger than those
at neighboring angles.

To evaluate the angles at which rainbows are formed, we return to the
equation denoting the total deviation from the original direction. The mini-
mum deviation ofa bundle of rays may be found by differentiating Eq. (5.149)
with respect to the incident angle and setting the result equal to zero. Thus,

de' = 0 = 2(1 _ det)
d(J fz de. .

I 1

Furthermore, differentiating Snell's law leads to

det cos ej

de j mcosii,

It follows then that

fzcose j = m costi;

(5.154a)

(5.155)

(5.154b)

On eliminating the refracted angle et from Eq. (5.I 54b) and Snell's equation,
we obtain the incident angle at which the minimum deviation takes place as

fz> 2. (5.156)

Once the refractive index has been given, we may evaluate the incident angle
corresponding to the minimum deviation for a given The refracted angle
and the scattering angle also may be calculated subsequently from Snell's
law and Eqs. (5.149a) and (5.149b), respectively.

Table 5.2 gives the incident and scattering angles for rainbows with various
indices of refraction. Minimum deviation also can occur in one case other
than the rainbows, namely in the glory at e= 180°. The condition for having
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TABLE 5.2 Incident (Ii;) and Scattering (Ii) Anqles for the Glory and Rainbows

Glory Rainbow Rainbow Rainbow Rainbow
for It = 2 for It = 2 for fz = 3 for fz = 4 for I' = 5

ill Ii; Ii Ii; Ii Ii; o Ii; Ii 0; Ii

1.10 75° 84° 81° 139° 8]0 170° 85° 119'
1.33 60 137 72 130 77 43 80 42
1.45 87° 1800 53 152 68 102 74 4 78 92
1.50 83 180 50 157 67 93 73 9 77 109
1.54 79 180 47 161 66 86 72 19 76 121
1.75 60 180 34 173 59 58 68 60 73 175
2.00 33 180 0 180 52 35 63 94 69 140

a glory for the ft = 2 rays is that the refractive index has to be between J2
and 2. Since the refractive index for water drops is about 1.33,we see that no
glory would be produced by geometrical ray tracing. The fact that a glory is
observed in nature from clouds points out one of the greatest discrepancies
between ray optics and Mie theory. It has been suggested that the glory
phenomenon is produced by the back scattering from edge rays apparently
connected with surface waves generated on the sphere. Primary (ft = 2)
and secondary (ft = 3) rainbows frequently are observed in the atmosphere.
Owing to the variation of the index of refraction of the raindrop with respect
to the incident visible wavelengths, various color sequences are seen. Exercise
5.7 requires calculation of the position of several colors for primary and
secondary rainbows. When the rainbows are very pronounced, super-
numerary rainbows often become visible. It is an interference phenomenon
accompanying the refraction of the light in the drop and cannot be explained
by the geometrical ray-tracing approach.

The above analyses only give the angles at which rainbows may be pro-
duced. However, the geometrical optics cannot provide the intensity of the
rainbow. It is evident from Eq. (5.152)that when minimum deviations occur,
the intensity approaches infinity. The geometrical optics approximation
assumes that the wave fronts near any point are sufficiently characterized by
their normals and by their local radii of curvature. It is clear that such an
approximation breaks down near the rainbow. The next higher approxi-
mation is a cubic wave front, which leads to the Airy theory. It should be
noted, however, that the intensity results derived from geometrical optics
are accurate in the vicinity of the rainbow angles, and with appropriate
extrapolations, intensity patterns at the rainbow angles may be approxi-
mately obtained. We shall demonstrate this when the comparison between
the ray optics and Mie theory is made.
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(5.157)

In this subsection we shall also introduce briefly the Airy theory for
rainbows. Since a raindrop is spherical, it is sufficient to use only a single
plane containing the center of the drop and the luminous object, and to
trace rays incident on one quadrant of the intersection circle. Refer to
Fig. 5.9b; let AB be the wave front of parallel incident rays above the ray
that passes through the center of the drop (the axial ray), and consider rays
which undergo only one internal reflection. (Note that the following dis-
cussions are general and applicable to internal reflections more than once.)
The heavy line denotes the course of the ray of minimum deviation (the
Descartes ray) for a water drop having an index of refraction of 1. Since the
deviations of the rays incident between the Descartes and the axial rays are
greater than that of the Descartes ray, the exits of these rays must lie between
those two rays. Likewise, rays which locate between the Descartes and the
edge rays must also have more deviations than that of the Descartes ray. As
a consequence, while they leave the drop beyond this ray, they eventually
will come between it and the axial ray. Thus, the one internally reflected
light rays are diffuse and weakened, except near the direction of minimum
deviation, and are confined to the region between this direction and the
axial ray. The wave front is now described by ACB".

The outgoing wave front near the Descartes ray is in the form of A'B'.
Through tedious geometrical analyses and numerous approximations [e.g.,
see Humphreys (1954)J, it can be shown that the wave front in Cartesian
coordinates is related by the cubic equation in the form

y = hx3j(3aZ
) ,

where a is the radius of the drop and

h = (l1z + 2,z)Z [(,z + 1)z - m
ZJ1 /Z

(,z + 1)Z(mZ - 1) mZ - 1

Equation (5.157) represents a curve closely coincident with the portion of
the wave front to which the rainbows are produced.

To evaluate the intensity and its variation with angular distance from the
ray of minimum deviation, we consider the diagram depicted in Fig. 5.9b,
and let 0 be the point of inflection of the outgoing cubic wave front near a
drop. Let ()o and () be the deviation angles for the Descartes ray and the
neighboring rays, respectively, and let P be a distant point in the direction
() - ()o from the Descartes ray. We find that the phase difference of the
disturbance at P for waves passing through points 0 and M is given by

<5 = k[x sin(() - ()o) - Y cos(() - ()o)]

= k[xsin(() - ()o) - �3�~�Z�X�3�C�O�S�(�(�) - ()o)}

(5.158)
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(5.159a)

where k = 2nj},. The amplitude of the wave disturbance up is then pro-
portional to integration of all the possible vibrations due to phase differences
along the X axis as

up �~ r; exp { -ik[xsin(e - eo) - �3�~�2 x3cos(e - eo)]}dX.

It suffices to use the cosine representation, and if we let

(2xj},sin(e - eo) = zt/2, (5.I 60a)

we find that the amplitude is now given by

(5.159b)

and the intensity 1= u;, where the rainbow integral due to Airy is defined by

1(z) = fooo cos �~ (zt - t 3)dt.

From Eq. (5.160a), we get

(5.161)

(6.160b)
3 48a 2 sin3(e - eo)z =-------

hA 2 cos(8 - 80 )

which, for small values of 8 - 80 , is proportional to (8 - 80 ) 3 . Thus, when
one is dealing only with small angles of departure from the Descartes ray,
we have

(5.160c)

Table 5.3 gives maximum and minimum values of z and 12(z) for a given
wavelength and drops of a definite size. Note that the first maximum (main
rainbow) does not coincide with z = 0, the geometrical position of the
primary rainbow (8 = 138.0°). Also note that the absolute intensity from the
Airy theory may be obtained by comparing the result from the geometrical
optics with the value of12(z) for large z.

5.6.2.2 Halos The high cirrus clouds in the atmosphere consist of ice
crystals having predominately hexagonal structures. Ice-crystal clouds
normally have low concentrations and thus present a tenuous appearance in
the sky. The solar or lunar disks may be clearly visible through the cloud
cover. Owing to the great variety of shapes and orientations of ice particles,
a large number of fascinating optical phenomena are noticeable under
favorable atmospheric conditions, among which the halos around the sun or
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TABLE 5.3 Maxima and Minima of the
Rainbow Integral

Maxima Minima

Number z f 2(z) Number z

I 1.0845 1.005 I 2.4955
2 3.4669 0.615 2 4.3631
3 5.1446 0.510 3 5.8922
4 6.5782 0.450 4 7.2436
5 7.8685 0.412 5 8.4788
6 9.0599 0.384 6 9.6300
7 10.1774 0.362 7 10.7161
8 11.2364 0.345 8 11.7496
9 12.2475 0.330 9 12.7395

10 13.2185 0.318 10 13.6924

�-�-�-�-�-�~�-�-�-�-�-�"�"�"�'�-�-

22 0 Halo
(Sundog)

1\
/7{'\

/ \
/ \ e'

/ \
Incident ray

Scattered ray

Fig. 5.10 Geometrical reflection and refraction by hexagonal crystals.
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moon are the most commonly observed features. We may use the ray-
tracing technique previously developed to locate the positions at which
halos are produced. Owing to the plane crystal surface, consideration of the
curvature effect is not required in the calculation of the scattered intensity.

In reference to Fig. 5.10, if a light ray passes through a prism of angle A
in a plane at right angles to the refracting edge, the deviation angle is

(5.162)

The minimum deviation occurs when

Since A = el + e;, we also have

de'
1 + del = 0.

I

An obvious solution to the last two equations is when e; = ei and e; = el .

Thus, from Eq. (5.162), the incident angle at which minimum deviation
occurs IS

(5.163a)

Also, the angle of refraction at minimum deviation is given by el = A/2.
When Snell's law is used, we have

sinGW + A)] = msin!A. (5.163b)

This is the basic relationship for finding minimum deviation from the known
index ofrefraction and prism angle. As illustrated in Fig. 5.10, the possible
prism angles are 60°, 90°, and 120°. However, owing to the property of the
sine function and the fact that the refractive index of ice is about 1.31 in the
visible wavelengths, a prism angle of 120° cannot produce minimum de-
viation. The common halo has an angular radius of 22° indicating refraction
by hexagonal prisms. The halo of 46° is produced by refraction of rectangular
prisms. Since the index of refraction varies with wavelength, white light is
dispersed into its component colors with red refracted least and blue re-
fracted most. The color sequence is the reverse ofthat observed in the corona.
This provides a means of distinction between ice and water clouds.

The fact that halos appear in the form of circles is due to the orientation
property of hexagonal prisms. Observation shows that hexagonal plates
and needles fall through the air having their major axes parallel to the ground.
They are continuously spinning on the horizontal axis and thus produce
random orientation in the horizontal plane. Light rays, which reach a sheet
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(5.164)

of ice columns or needles randomly oriented in a horizontal plane will then
produce halos in directions along conical circles at the angle of minimum
deviation surrounding the sun or the moon. When the sun is close to the
horizon and thin cirrus clouds are present, colored streaks greater than 22°,
at the same elevation as the sun, may sometimes be observed. This optical
phenomenon is called parhelia of 22° or, commonly, sun dogs or mock suns.
The sun dogs are only two bright spots since we are unable to see the other
rays from the sun deviated by clouds higher above the horizon. External
reflections from the flat horizontal faces of ice plates produce streaks of
white light, which may be above, below, or both above and below the sun;
they are called sun pillars. There are other colored arcs caused by the re-
fraction and reflection by ice crystals. Identifications of their positions
require tedious geometrical exercises.

Since ice crystals are nonspherical, it is obvious that the Mie scattering
theory developed earlier cannot be used to calculate their scattering and
extinction cross sections nor their phase functions. However, these para-
meters are needed to understand the transfer of solar and infrared radiation
through cirrus cloud layers. One approach to the difficult scattering problem
involving ice crystals is to utilize the ray-optics technique described pre-
viously. Another approach would be experimentally determining the scat-
tering properties of ice-crystal clouds generated in the laboratory or in
the atmosphere. We shall introduce the scattering behavior of ice crystals
in the following section.

5.6.3 Comparison between Ray Optics and Mie Theory
for Spheres

In order to compare the scattering results derived from ray optics with
those from Mie scattering, we define the gain G relative to an isotropic
scatterer. This gain is defined as the ratio of the scattered intensity to the
intensity that would be found in any direction if the particle scattered the
incoming energy isotropically. Thus, the averaged gain over the entire
solid angle is unity such that

�~ f G1 2(8)dQ = 1.4n 4n '

Isotropic scattering implies that the incident energy I ana2 to a sphere with
radius a is uniformly distributed over the surface of a sphere 4nr2

• Con-
sequently,

(5.165)
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From Eq. (5.86), we find

161

(5.166)

In a similar manner, the gain due to diffraction may be written as

(5.167)

where ip is given in Eq. (5.133). The gain due to diffraction is the same for
the perpendicular and parallel components.

The total gain caused by diffraction and geometrical reflection and re-
fraction can now be expressed by

N

G\,z = GJ + I Gf,z,
p=o

(5.168)

where the geometrical reflection and refraction are represented by the index
fz. They include external reflection (fz = 0), refraction (fz = 1), and internal
reflection (fz ?: 2).

The foregoing treatment neglects the different contribution to the scattered
intensity caused by the phase interference produced by various ray-optics
components. In the case of large particles, the phase interferences give
rise to rapidly oscillating intensities as a function of scattering as shown in
Fig. 5.4, However, if the particles are randomly located and separated by
distances much larger than the incident wavelength, the intensities from
separate particles may be added without regard to the phase. For a sample
of such particles, called polydispersion, the numerous maxima and minima
are then lost in the integration over particle size. Hence it is reasonable to
ignore the phase altogether in adding the intensities for diffraction, re-
flection, and refraction for a sample of large particles of various sizes. Figure
5.11 compares phase function P 11 and degree of linear polarization from
the Mie theory to the corresponding results from ray optics for the typical
refractive indices of 1.33 and 1.50 for water drops and aerosols, respectively,
in the visible spectrum. Mie calculations were made for a size parameter
of 400. The size distribution employed in the Mie and diffraction calculations
is the gamma function with its mode at X m • It is given by

(5.169)

where c is an arbitrary constant. There is close agreement between ray
optics and the Mie theory when the size parameter is as large as 400. An
exception is the glory feature for m; = 1.33 which, as discussed earlier, does
not occur in the ray-optics results. Most of the discrepancies and their
variation with the size parameter can be qualitatively understood in terms
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of the increasing inapplicability of the localization principle for decreasing
size parameters. This causes the light in the individual features to be blurred
over a wider range of angles than predicted by ray optics. The secondary
rainbow is quite smooth at xm = 100 and is lost at xm = 25, while the primary
rainbow is still easily visible. The number of rainbows visible in the in-
tensity pattern thus give some indication of the particle size. The rainbow,
in addition to being smoothed out, tends to move away from its ray-optics
location as the size parameter decreases. For Mie scattering with X m = 400,
the small secondary peaks on the less steep side of the rainbows are super-
numerary bows, which are caused by interference phenomena and hence
are not rendered by ray optics in which the phase is neglected. There is
also a small but noticeable discrepancy in the diffraction peak. The higher
value for Mie scattering perhaps may arise from surface waves which scatter
in the forward direction. The lower figure compares the degree of linear
polarization defined in Eq. (3.75). The polarization patterns contain much
stronger imprints of most of the features occurring in the scattered light
such as the rainbows, the supernumerary bows, the glory, and the external
reflections all of which produce positive polarization.

In Fig. 5.12, we also show comparisons of the theoretical and experi-
mental scattering phase function and polarization patterns. These scatter-
ing patterns are derived from measurements of a rather dense water cloud
in the cold chamber, utilizing He-Ne (0.6328 flm) laser light. The curves
depicted in this figure are comprised of five successive nephelometer scans
(10°-175°) which were each normalized at 10° scattering angles and then
averaged, with the standard deviations of the averages shown as vertical
bars. The measured cloud droplet size, using a continuous-impactor-re-
plicator device, displayed a modal diameter of2 flm and a maximum diameter
of 10 flm. This size spectra was fitted with a zeroth order log-normal dis-
tribution (Kerker, 1969) in the form

n(a) = exp[ -(loga -10gam)2/(2Go)]/[J2JrO"oamexp(G6I2)], (5.170)

where am (=2flm) denotes the modal diameter, and Go(=0.275) the geo-
metric mean standard deviation. Mie scattering calculations employing
this size distribution were made, and the results were compared with the
measured data. It is seen that the comparison of the experimental and
theoretical patterns yields rather close agreement. Owing to the relatively
small size of the cloud droplets (the modal size parameter X m �~ 20), both
theory and measurment show that the secondary cloudbow is absent, and
that the primary cloudbow reaches a maximum at about 146°. Close agree-
ment is found also for the linear polarization pattern, especially in the
vicinity of the primary cloudbow where strongly positive polarization
values are observed.
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droplet size distriubtion (after Sassen and Liou, 1979).
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The angular scattering behavior of water droplet clouds may be precisely
described by the Mie scattering theory for a representative polydispersion
of homogeneous water spheres. Based on the exact Mie theory, the optical
properties of water droplets for any wavelength in the solar, infrared, and
microwave spectra can be evaluated, provided that the droplet size distribu-
tion is given. With the resulting comprehensive numerical tables (Deir-
mendjian, 1969) and the existing Mie computer programs, the problem of
polarized light scattered by water spheres seems to have been completely
solved.

However, the changing atmosphere also contains micrometer-sized
aerosol particles and large ice crystals, which are nonspherical. The deter-
mination of polarized light scattered by these irregular particles is made
very difficult by their nonsphericity and the consequent problem of orienta-
tion. Knowledge of the scattering and absorbing behavior of atmospheric
clouds and aerosols is of vital importance for remote sounding of cloud
and aerosol compositions of the atmosphere by means of intensity and
polarization techniques. Also it is closely relevant to the radiation budget
and hence the climate and climatic changes of the earth-atmosphere sytem.

Clouds regularly cover about 50 %of the earth. In addition to absorbing
and scattering the incoming solar radiation, clouds also trap the outgoing
terrestrial radiation and produce the greenhouse effect. Thus, clouds repre-
sent the most important modulators of radiation in the earth-atmosphere
system. However, effects of cirrus clouds on the radiation budget of the
earth-atmosphere are less understood because of their high location in
the troposphere and their semitransparent property with respect to both
solar and terrestrial radiation. Moreover, cirrus clouds exclusively consist
of nonspherical ice crystals whose light scattering properties in solar and
infrared spectra are largely unknown. The nonspherical shapes of ice cry-
stals depend upon such variables as temperature, saturation ratio, and
atmospheric conditions. Under normal circumstances, ice crystals have
the basic hexagonal structure. The fact that we see halos in cirrus cloudy
atmospheres as illustrated in Section 5.6.2.2 proves that cirrus clouds must
be composed of hexagonal crystals. Moreover, according to a number of
in situ observations, the sizes of hexagonal crystals normally are on the
order of several hundred micrometers. Thus, the ray-optics approach
described in the previous section may be applicable for the scattering study.
The scattering phase functions for hexagonal columns and plates have
been reported by Jacobowitz (1971), Wendling et al. (1979), and Coleman
(1979). In this section, we present and discuss physically some scattering
characteristics of hexagonal ice crystals.
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The general geometry of light rays incident on a hexagonal crystal is
depicted in Fig. 5.13. The geometry of the crystal is defined by the length
L and radius R, while the incident light rays are described by the ray plane.
Normal to the Z axis, we define the principle plane, which lies on an XY
plane. A hexagon has six equal sides along with the top and bottom faces.
To describe the geometry of the hexagon with respect to the incident ray
plane, seven variables are required: the length and radius of the hexagon
and the position of the principal plane, the position of the incident rayon
the ray axis, and three angles defining the orientation of the crystal with
respect to the incident ray, i.e., the elevation angle s, the rotation angle
qJ, and the azimuthal angle cP.

Having defined the variables involved, the ray tracing procedures may
be outlined. We first find the position of the entry ray in the (X, Y, Z) co-
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Fig. 5.13 General geometry of light rays incident on a hexagonal crystal; P is the point where
the ray enters, 81 is the incident angle, A and B are points on the principle plane, 0 is the center
point on the principal plane, and other symbols are explained in the text.
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(5.171)
_ exp( - 2km;lft)
- LCOS8jj

ordinates in terms of the seven geometrical variables. Through Snell's
law, we find the refracted angles in terms of the incident angle mapped on
the principal plane and the elevation angle. It follows that the position of
the exit ray, the face that the ray will hit and the geometrical path length
in the crystal can be determined through the procedures of the analytical
geometry. The procedures are then repeated for internally reflected rays.
Finally, we need to find the scattering angle with respect to the incident
ray, to perform the summation of the refracted and reflected components,
and to carry out the normalization of the energy pattern to get the scattering
phase function.

The geometrical ray tracing equations for hexagons differ greatly from
those for spheres. Spheres have a curvature effect, whereas hexagons do
not. Also, a hexagon does not have the symmetry of the geometrical path
length that a sphere inherently possesses. Basically, the general equation
for the scattered energy per unit angle normalized with respect to the incident
energy perpendicular to the X axis may be described by

EH8,jz) = IEH8,jz,8)exp( -2km ilft)!Lcos8 jj
] ]

IIR j(81j)Jl cos81j,
jz = 0 (external reflection)

I[l -IR j(8jj)JlJ[1 -IR j(82j)JlJ cos 8jj,

jz = 1 (two refraction)

L[l -IR j(8 jj)JlJ[1 -IR1(8(ft+ l)j)JlJ

ft
x n IRj(8nj)Jlcos8jj,

n=2

(internal reflection)

where subscript l(r) denotes the perpendicular polarization component.
The equation is also valid for the parallel component 2(1). In this equation,
8 is the scattering angle;j the index for the entry rays; 1ft the ray path length
in the crystal (1ft = 0, when jz = 0); 8 j the incident angle, which normally
has three different values; jz the index denoting the event of reflection and
the refraction; and 82, 83 , ... are incident angles in the crystal. In this equa-
tion the effect of absorption is included so that absolute values need to be
taken for the reflection and transmission components (see Exercise 5.8).
Scattering energy patterns for two and three-dimensional orientations
subsequently may be computed by noting the specific relation of the in-
cident angle and the elevation and azimuthal angles. For horizontal orienta-
tion cases, the incident angle is the elevation angle. But for general cases,
cos 8 j = cos ejcos ¢j.
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Snell's law governing the incident angles (s., ¢J and refracted angles (s., (Pt)
can be proven to be

n1r sin ct = sin s., mAcosct/coscj)sin¢t = sin e,, (5.172)

where m, is the real index of refraction.
To complete the ray tracing exercise, we must include the diffraction

pattern. The projection of a hexagonal column onto a horizontal plane
clearly resembles a rectangle. The diffraction pattern for a rectangular
aperture can be easily derived from the Franhofer diffraction theory. It is
given by

d sin2(Rk sin 8 cos ¢) sin2[(L/2)k sin 8 sin ¢]
E (8,¢,L) = (Rksin8cos¢)2 [(L/2)ksin8sin¢]2' (5.173)

(5.174)

where k is the wave number. Clearly, three parameters are required to
define the position of a hexagon in reference to the incident ray; i.e., the
scattering angle 8, the azimuthal angle ¢, and the geometrical length L.
For horizontally oriented hexagons the diffraction pattern can be obtained
by performing integration in ¢ from 0 to n; i.e.,

d 1 i" dE2D(8,L) = - E (8,¢,L)d¢.
n 0

For three-dimensional random orientation, integration with respect to
the length of hexagons is required. Thus, we find

I
I fL/2 d , ,

(L/2 _ R) JR E2D(8,L )dL for columns

�E�~�D�(�8�) = (5.175)

1 fR Ed (8 L')dL' for plates.
(R - L/2) JL/2 2D'

It should be noted that for plates, the approximate equation is less accurate
because the major axis is on the plane of the hexagon.

Since the equations derived from the ray tracing procedure are presented
in units of energy per degree, we must now perform normalization so that
the scattering phase function can be derived. On the basis of the definition
of gain with respect to isotropic scatterers, we find

G(8)2nsin8d8r
2

= E(8)d8 (5.176)
4nr 2 '

where r denotes the distance, and the gain is normalized as in Eq. (5.164).
Figure 5.14 shows the scattering patterns due to geometrical reflection

and refraction for horizontally oriented and randomly oriented columns
with lengths and radii of 300 and 60,um, respectively, incident by a visible
wavelength of 0.55 ,urn. The index It in the diagram denotes the contribution
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Fig.5.14 Scattering phase functions for randomly oriented columns (3D) and for horizontally
oriented columns (2D) with elevation angles 8 of 0" and 42°.

of the scattering energy: It = 0, external reflection; It = 1, two refractions;
and It 2 2, internal reflection. The dashed and dashed-dot lines represent
the scattering patterns for horizontally oriented columns with elevation
angles of 0° (normal incidence) and 42°, respectively, while the solid curve
denotes the scattering pattern for random orientation. The major features
for these three cases are the strong forward scattering and halo in the region
20° -30°. For horizontal orientation, the halo feature shifts to a larger
scattering angle when the incident angle increases. We see an 8° difference
for incident angles of 0° and 42°. Owing to the shift of the halo features for
different incident angles, the halo feature in the case of random orientation
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is broadened and smeared out. The less pronounced 46° halo features are
also evident in the random orientation case. The strong peak at 96° in the
case of horizontal orientation with an incident angle of 42° is strictly due to
the external reflection. Note that the scattering pattern beyond 96° is caused
by the end effects and internal reflections. For random orientation and hori-
zontal orientation with normal incidence, the backscattering is primarily
produced by one internal reflection. The less pronounced backscattering in
the random orientation case is the result of the averaging over many oblique
incidence cases. The diffraction peaks show about the same value for these
orientation cases.

Comparison of the scattering phase functions for randomly oriented
columns with lengths of 300 uiu and radii of 60 iu», and plates with lengths
of 25 /lm and radii of 125 /lm is illustrated in Fig. 5.15. The most significant
scattering differences between plates and columns are the much lower
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Fig.5.15 Phase functions for randomly oriented (3D) columns and plates.
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forward peak for columns, and the lower side scattering for plates. The well-
defined 22° halo for columns is stronger than that for plates. Both scattering
patterns depict the very narrow diffraction peak, strong 22° halo feature, and
peak at backscattering. The 46° halo feature is less pronounced for columns.
Note that columns and plates have about the same volume.

The degree of linear polarization is shown in Fig. 5.16 for randomly
oriented columns and plates as well as for spheres based on the geometrical
ray tracing for comparison purposes. The polarization pattern for plates
remains negative from 0 to about 66°, whereas for columns negative polari-
zation extends only from 0 to about 39°. The strong polarization maximum
for plates at about 136° is caused by external reflection (Iz = 0). Such a
maximum occurs at about 70° for columns. The positive polarization peaks
at about 156 and 178° for columns are associated with one internal re-
flection (Iz = 2). There is a slight negative polarization for plates in the
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Fig. 5.16 The degree of linear polarization for randomly oriented columns and plates and
for spheres. Also shown is the polarization pattern derived from experimental data for plates
having a modal diameter of 20 )lm.
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back scattering direction from about 165 to 180°. The polarization patterns
for nonspherical plates and columns differ significantly from the polariza-
tion produced by spheres. Large spheres (i.e.,in geometrical regions) generate
strong polarization at about 80° due to the external reflection, and at the
first �(�~�1�3�8�°�) and second �(�~ 126°) rainbow angles caused by one and two
internal reflections, respectively. The apparent and significant differences
in polarization patterns caused by the shape factor may provide a practical
and feasible means for the identification of spheres, plate- and column-like
particles in clouds. Also shown in this figure is the polarization pattern
derived from experimental data for plates having a modal diameter of 20
pm. There is general agreement between the measured and calculated
polarization patterns for plates despite the size difference.

Finally, it should be noted that information and physical understanding
of the basic scattering parameters for oriented columns and plates are
required to perform radiative transfer calculations for cirrus clouds and to
develop active remote sensing techniques for the identification of the phase,
shape, and size of cloud particles.

EXERCISES

5.1 Based on the definitions of M, and NljJ m Eqs. (5.23) and (5.24),
show that

and prove that

V2NljJ + k2m2NljJ = 0,

5.2 From the radial component of the magnetic vector

show that

i �1�~ 'n 2n + 1 1 .rv =-k L. (-I) ( )t/Jn(kr)Pn(cos8)sm¢.
n=l nn+l

5.3 The electric and magnetic field vectors in a homogeneous medium
satisfy the following vector wave equation:

V2A + k2m2A = 0.

If t/J satisfies the scalar wave equation

V2t/J + k2m2t/J = 0,
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(a) show that vectors M![J and N![J in cylindrical coordinates (r, ¢, z)
defined by

satisfy the vector wave equation, where a, is a unit vector in Z direction
(b) Also prove that

E = M, + iNu , H = m(-Mu + iNv)

satisfy the Maxwell equations, where u and v are solutions of the scalar wave
equation. Write out the expressions for E and H in terms of u and v.

5.4 The scalar wave equation in cylindrical coordinates is given by

1 a (at/J) 1 a
2t/J

a
2t/J

2 2
�~ ar r ar + r2 a¢2 + az2 + m k t/J = o.

Utilizing the method of separation of variables, show that the solution can
be written as

t/Jn(r,¢,z) = eiwtzn(jr)ein¢e-ihz,

where h is an arbitrary constant, n is an integer, j = (m2k 2 - h2)1/2, and
Z; is any Bessel function of order n.

5.5 The electric fields scattered by nonspherical particles, in general,
may be expressed by

�[ �E �~ �] = e-ikr+ikz [52 53][E:].
�E�~ ikr 54 51 Er

Derive the explicit form of the transformation matrix M associated with
Stokes parameters in terms of S, (j = 1,2,3,4).

5.6 Using the Fresnel formulas, show explicitly that the transmitted
and reflected portions of the energy for the two polarization components
are conserved. Also compute the incident angle 8i at which R 2 = O. This
angle is called the polarizing or Brewster angle, under which the electric
vector of the reflected light has no component in the plane of incidence.

5.7 The wavelengths of red and violet light and the corresponding refrac-
tive indices of ice and water at these wavelengths are given as follows:

A (um) m (ice) m (water)

0.656
0.405

1.307
1.317

1.332
1.344

(a) Describe the color sequence of the corona. Find the radius of
cloud particles which produce a secondary white corona of 100 angular
radius about the sun.
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(b) Describe the mechanism of cloudbow formation. Find the scat-
tering angles for the primary and secondary cloudbows at these two wave-
lengths.

(c) Find the angular radii of the rings of the halos formed by prism
angles of 60 and 90°. What will be the widths of the rings?

(d) Derive Eq. (5.172) and find the angular distance between the sun
and sun dogs when the elevation angle of the sun is 30°. Sketch a diagram
of sun dogs indicating the angular and azimuthal distances and the width
of two colors.

From these cloud optics, what may be concluded about the shape, size
distribution, and orientation of cloud particles?

5.8 When absorption is involved, the refractive index m = m, - im.,
prove that the Fresnel reflection coefficients are given by

Z (cos8j-uf+vz

IR11 = (cos 8j+u)Z + vZ'

I I
z - [(m;-mt)cos8j-uJ z + (2mrmjcos8j-vf

Rz �-�~�-�-�'�;�,�-�-�-�'�;�,�-�-�-�-�:�:�-�=�-�-�-�~�~�-�-�-�-�c�=�-�'�-�-�-�-�'�-�-�-�=�~�-�'�-�;�;�-
[(m;-m;)cos 8j+uJz + (2mrmj cos 8j+v)Z'

UZ= -'-{mZ _ mZ_ sinz8. + [(m Z _ mZ- sinz8.)z + 4mZmZJ1/Zl
2 r 1 1 r 1 1 r 1 j,

V
Z= H-(m; - m; - sinZ8J + [(m; - m; - sinZ8

jf + 4m;mfJl/Z}.

To derive these equations, let m cos 8t = u + iv in Eq. (5.145) and use the
law of refraction sin 8j = m sin 8t •

5.9 Neglecting the proportionality constant, derive Eq. (5.173) from Eq.
(5.125).
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Chapter 6
PRINCIPLE OF MULTIPLE
SCATTERING IN PLANE-PARALLEL
ATMOSPHERES

In Section 3.7 and Chapter 5, single scattering processes involving mole-
cules and particulates in planetary atmospheres were discussed. In a realistic
atmosphere, molecules and particulates not only undergo single scattering
but also multiple scattering which is responsible for the transfer of energy
within the atmosphere. We have introduced the concept ofmultiple scattering
in Section 1.1.4 and have presented the basic equation of transfer for plane-
parallel atmospheres in Section 1.4.4. The source function associated with
multiple scattering, however, was not specifically defined. In this chapter,
we discuss the fundamentals and various approximations and methods
dealing with multiple scattering problems utilizing the single-scattering para-
meters defined in Section 3.7 and Chapter 5. We begin with formulating the
basic radiative transfer equation for the scattering of sunlight in plane-
parallel atmospheres and discuss the representation of the phase function.
Simplified approximations including the order of scattering, two stream
and Eddington's methods for multiple scattering are then described. Pre-
sentation of the classical discrete-ordinates method for radiative transfer,
especially for cases of isotropic scattering, and description of the principles
of invariance for infinite and finite atmospheres leading to the H-function and
X and Y functions, respectively, are followed. The inclusion of surface re-
flection in multiple scattering problems is also outlined. We then introduce
the adding method for multiple scattering and illustrate the equivalence of the
adding method and the principles of invariance for finite atmospheres. The

176
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following section is concerned with the use of the Stokes parameters in
multiple scattering. i.e., the inclusion of polarization. The final section deals
with the fundamental transfer equations for multiple scattering by oriented
nonspherical particles and for multiple scattering in three-dimensional space.
Subject matters including the diffusion approximation, the spherical har-
monics method, and the invariant imbedding are also introduced in the
exercise section.

6.1 FORMULATION OF THE SCATTERING OF SUNLIGHT
IN PLANE-PARALLEL ATMOSPHERES

Consider a plane-parallel atmosphere illuminated by flux of radiation
nF 0 emitted from the sun. Assuming that the diffuse intensity is from below,
we then have the reduction ofthe differential diffuse intensity caused by events
of single scattering and absorption by particles. This is expressed by

dI(z,n) = -(JeN1(z,n)dzjcos8, (6.1)

where dz is the differential thickness, ii; the mean extinction cross section of
a sample of particles, N the total number of particles per volume, and n
the directional element of solid angle that represents the pencil of radiation
(see Fig. 6.1).

Zenith

T
dz

1

�I�~

:-.0.0 (-fLo' 4>0)

I
I

a ,b Diffuse

c Direct

Fig. 6.1 Transfer of solar radiation in plane-parallel layers, illustrating attenuation by extinc-
tion, a; multiple scattering, b; and single scattering of the unscattered solar flux, c.
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Meanwhile, the differential diffuse intensity in the direction !l may be
increased by multiple scattering, arising from the scattering of a pencil of
radiation of solid angle dO.' in the direction .Q'. This is given by

f P(!l,!l')
d1(z,.Q) = (isN dzlco« 0 1(z, .Q') 4 do.',

41t n
(6.2)

(6.3)

(6.5)

where (is denotes the mean scattering cross section, and the nondimensional
phase function introduces the appropriate radiation stream from !l' to !l.
Thus, integration over the entire solid angle gives all the possible contri-
butions of multiply scattered radiant energy from .Q' to !l.

In addition, the differential diffuse intensity in the direction !l also may
be increased due to single scattering of the direct solar radiation whose
direction is represented by -.Qo(where the minus sign denotes that the direct
solar radiation is always downward). If the direct solar flux at level z is F(z),
then

d1(z,.Q) = (jsN dz F(z) P(.Q, - .Qo),
cos e 4n

From the Beer-Bouguer-Lambert law discussed in Section 1.3.2, F(z) is
simply

F(z) = �n�F�o�e�x�p�{�-�~�o 1
00

(je(Z')N(Z')dZ'}, (6.4)
cos 0 Jz

Upon combining Eqs. (6.1)-(6.4), and introducing the optical depth de-
fined in Section 1.4.4 and the single-scattering albedo defined in Eq. (5.117),
we obtain the basic equation for scattering of solar radiation in plane-
parallel atmospheres as

p �d�1�~�, .Q) = 1(T,.Q) _ W 1 1(T, .Q')P(!l, .Q') dO.'
T 4n J41t

w
- - nFoP(.Q, -.Qo)e-t!Jlo.

4n

Note that p = cost), Po = cosOo, dO. = du ddi, .Q = (p,¢), and ¢ represent
the azimuthal angle.

In reference to Section 1.4.4, it is clear that the source function in the solar
spectral region is

W I Z1t I1J(T; u, ¢) = 4n .lo -1 1(T; p', ¢')P(p, ¢; p', ¢')dp' d¢'

(6.6)
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The scattering geometry is shown in Fig. 6.2. As noted in Section 3.7.1,the
scattering angle is defined as the angle between the incident and scattered
beams. Lines AO and BO in the figure denote the incident and scattered
beams, respectively. Based on the spherical geometry as shown in Appendix
F, the cosine ofthe scattering angle can be expressed by

cos O = cos8cos8' + sin8sin8'cos(¢' - ¢)

= pp' + (1 - p2)1/2(1 - p'2)1 /2 cos(¢' - ¢). (6.7)

The phase function defined in Eq, (3.63) may be numerically expanded in
Legendre polynomials with a finite number of terms, N. Thus,

N

P(cos e) = L W1P1(COS e),
1=0

(6.8)

where WI are a set of N + 1 constants and Wo = 1. In view of Eq, (6.7), we have
N

P(fl,¢; fl',¢') = L W1PI[flfl' + (1 - fl2)1 /2(1- fl'2)1/2COS(¢' - ¢)].
1=0

(6.9)

The Legendre polynomials for the argument shown in Eq. (6.9) can be
expanded by the addition theorem for spherical harmonics (see Appendix G)
to give

N N

P(fl,¢;fl',¢') = L L W'('P'('(fl)P'('(fl') cos rn«P' - ¢), (6.10)
m=OI=m

Zenith

Fig. 6.2 Relation of scattering, zenith, and azimuthal angles.
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where

6 Multiple Scattering in Plane-Parallel Atmospheres

(6.12)

(I = m, ... ,N, 0::;; m ::;; N), (6.11)-In _ (2 _ �~ ) - (l- m)!
WI - VO,1n WI (I + m)!

{
I if m = 0,

°0,1n = ° otherwise,

and p'(' denote the associated Legendre polynomials.
In view of the phase function expansion, we also may expand the intensity

in the form

N

I(r; p,¢) = L r(r,p)cosm(¢o - ¢).
1n=0

(6.13)

Upon inserting Eqs. (6.10) and (6.13) into Eq. (6.5) and noting the orthogo-
nality of the associated Legendre polynomial, Eq. (6.5) splits up into (N + 1)
independent equations:

dIIn(r, p) IIn( ) (1 �~ ) w �~ -Inp ln( ) f1 PIn( ')IIn( ') d 'P dt = r, p - + VO,1n 4 �1�~�1�n WI I P _ 1 I P r ; P u

W N

- -4 L wTP,(,(p)PT( - Po)nFoe- r/llo (m = 0, 1, ... , N). (6.14)
nl=1n

Each equation may be solved independently for fin, and from Eq. (6.13),
I may be determined.

For m = 0, the intensity expressed in Eq. (6.13) corresponds to the
azimuthal independence case. We neglect the superscript °for simplicity
and rewrite Eq. (6.14) to yield

dI(r,p) w N f1 "
P-d-=I(r,p)--2 L WIPI(P) _ Pz(p')I(r;p)dp

r 1= a 1

(6.15)

(6.16)

(6.17)

Equation (6.15) is particularly useful for flux calculations as will be seen in
the following discussions.

For scattering atmospheres, the diffuse upward and downward flux
densities for any given r are given, respectively, by [see the definition of flux
density in Eq. (1.9)]

i {21r (1
Fdif(r) = Jo Jo I(r; p, ¢)pdpd¢,

,2" ,-1
FL(r) = Jo Jo I(r;p,¢)pdpd¢,
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Thus, by noting that
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f21rJo cosm(¢o - ¢)d¢ = 0, m #- 0, (6.18)

in Eq. (6.13), we obtain the upward and downward flux densities

it f±1.Fdif(r) = 2n Jo I(r, fl)fldfl· (6.19)

Consequently, for flux calculations in the atmosphere, the azimuthal depen-
dence of the intensity expansion can be ignored, and Eq. (6.15) is sufficient
for radiation studies.

Moreover, for azimuthal independent cases, we may define the phase
function

(6.20)

In view of the phase function expansion represented by Eq. (6.10),we shall
have then

N

P(fl, fl') = I W/P1(fl)P/(fl').
/=0

(6.21)

By virtue of this equation, the azimuthally independent transfer equation
for diffuse radiation expressed in Eq. (6.15) can be rewritten as

dltt; fl) W fl ,
u �~ = I(r, fl) - 2 -1 I(r, fl )P(fl, fl')dfl'

W
- - nFoP(fl, - flo)e -r/#o.

4n
(6.22)

It should be noted that we use the positive fl to denote the upward radiation,
whereas the negative fl denotes the downward radiation; this is evident in
Eqs. (6.16) and (6.17). Hence, the floS that denote the direct solar radiation
component are negative values. However, a positive flo has been employed
for convenience, and - flo represents the fact that the direct solar radiation
is downward. For the transfer of terrestrial infrared radiation in scattering
atmospheres, which are in local thermodynamic equilibrium, we simply
replace the last term in Eq. (6.22) by the thermal emission contribution
(1 - wJBv[T(r)], where B; is the Planck function of temperature T.

Since the equation of transfer only describes the diffuse component of
radiation, i.e., radiation scattered more than once, we must include the direct
component of radiation to account for the downward radiation. It is given
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by the simple Beer-Bouguer-Lambert law of extinction

(6.23)

The total upward and downward flux densities at a given r are, respectively,

Fi(r) = F,L(r) = 2n fo
l

l(r, fl)fldfl, (6.24)

F"(r) = Fd;r(r) + FL(r) = 2n fo-
l

I(r,fl)fldfl + flonFoe-t/llo. (6.25)

The net flux density for a given level is therefore

F(r) = Fi(r) - F"(r). (6.26)

It follows that the heating rate in the atmosphere, due to solar radiation,
can be evaluated according to discussions made in Section 3.5.

6.2 APPROXIMATIONS FOR RADIATIVE TRANSFER

6.2.1 Single Scattering and Order
of Scattering Approximations

Consider the emergent radiation as consisting of light which has been
scattered only once. Then, the radiation source function is simply

(6.27)

On the basis ofEqs. (1.64)and (1.65),the upward (reflected) and downward
(transmitted) intensities for a finite atmosphere bounded on two sides at
r = 0 and r = r 1 are

I t dt'
x exp{ -[(r - r')/fl + r'/floJ}-.

o fl

(6.28)

(6.29)
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When we assume that there is no diffuse downward and upward radiation
at the top and the base of the finite atmosphere, i.e.,

1(0; - u, ¢) = 0,

1(r1 ; fl,¢) = 0,
(6.30)

then the reflected and transmitted intensities for a finite atmosphere with
an optical depth r 1 are

(6.31)

fl = flo·

It is clear that for the single-scattering approximation, intensities are directly
proportional to the phase function.

The method of successive orders of scattering is one in which the intensity
is computed individually for photons scattered once, twice, three times, and
so forth, with the total intensity obtained as the sum over all orders. Hence
for diffuse reflected and transmitted intensities we may write, respectively,

00

1(r;fl,¢) = I1n(r;fl,¢),
n=1

00

1(r; -fl,¢) = I 1,,(r; -fl,¢),
n=1

(6.33)

where n denotes the order of scattering.
Subject to the boundary conditions denoted in Eq. (6.30), the formal

solution of the equation of transfer is given by

i t , di'
1(r; u, ¢) = J(r'; u, ¢) exp[ - (r' - r)/fl] -,

, fl

di'
1(r; -fl,¢) = r' Jti': fl,¢)exp[ -(r - r')/fl]-.Jo fl

(6.34)
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n > 1,

n ;:0: 1, (6.35)

The source function for the first-order scattering of the incident radiation
is given by Eq. (6.27). Inserting it into the formal solution of the equation
of transfer [Eq. (6.34)] and integrating over the appropriate optical depths,
we obtain the intensity due to photons scattered once. It follows that the
source functions and intensities may be derived successively by means of
the recursion relationships

I t ! , ,dr;'
In(r;; Jl,¢) = In(r;; Jl,¢)exp[ -(r; - r;)/Jl]-,

t Jl

In(r;; -Jl,¢) = It In(r;'; -Jl,¢)exp[ -(r; - r;')/Jl] dr;',Jo Jl

where the zero-order intensity is given by Dirac's (j function

lo(r;; u', ¢') = nFoe-t/1lO(j(Jl' - Jlo) (j(¢' - ¢o)· (6.36)

Numerical techniques may be devised to carry out the integrations for a
finite interval of r; in Eq. (6.35) to obtain the intensity distribution.

6.2.2 Two-Stream and Eddington Approximations

In order to solve Eq. (6.15) analytically, the integral has to be replaced
by summation over a finite number of quadrature points. It has been found
that Gauss's formula is superior to other formulas for quadratures in the
interval (-1,1). For any function !(Jl), Gauss's formula is expressed by

(6.37)

(6.38)

where the weights are

a. = _1_Il PZn(Jl) du
J �P�~�n�(�J�l�j�) - 1 Jl - Jlj ,

and Jlj are the zeros of the even-order Legendre polynomials PZn(Jl). We
also find that

(6.39)
j= -r n

Table 6.1 lists the Gaussian points and weights for the first four approxi-
mations.
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TABLE 6.1 The Gaussian Points and Weights

n 2n ±l1n an

2 111 = 0.5773503 al = 1

2 4 III = 0.3399810 a l = 0.6521452
112 = 0.8611363 a2 = 0.3478548

3 6 III = 0.2386192 a l = 0.4679139
112 = 0.6612094 az = 0.3607616
113 = 0.9324695 a3 = 0.1713245

4 8 111 = 0.1834346 al = 0.3626838
112 = 0.5255324 az = 0.3137066
113 = 0.7966665 a3 = 0.2223810
114 = 0.9602899 a4 = 0.1012285
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(6.4la)

On utilizing Gauss's formula, Eq. (6.15) can be written as

dI(r;fJ,J w N _ n
fl.i dr = I(r; fl.i) - 2 �/�~�o W/P/(J1i) �j�=�~�n ajP/(fl.)I(r; fl.)

�-�~ FoLta (-l)/w/p/(.U;)p/(fl.o)]e- r/Ilo
, i = -n, n, (6.40)

where fl.J - n, n) represent the directions of radiation streams.
For simplicity of solving Eq. (6.40), we take two radiation streams, i.e.,

j = -I and I, and N = 1. Note that fl.l = 1/13 and al = a-I = 1. After
rearranging terms and denoting II = I(r; fl.l) and It = I(r; - J1d, two simul-
taneous equations are derived. They are

dIi
fl.l d; = It - w(1 - h)I' - whIt - S-e- r/llO ,

where

g = WI = �~ fl P(cos0)cos0dcos0 = <cos0),3 -1

1 - g fl 1 - cos 0
b = --= .1 P(cos 0) d cos 02 2 -1 2 '

(6.41 b)

(6.42)
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(6.43b)

(6.44a)

(6.44b)

The parameter g is called the asymmetry factor and is the first moment of
the phase function. It is derived from Eq. (6.8) by using the orthogonal
property of the Legendre polynomials. Note that the zero moment of the
phase function is simply equal to wo(= 1). For isotropic scattering, g is
zero as it is for Rayleigh scattering. The asymmetry factor increases as the
diffraction peak of the phase function becomes increasingly sharpened.
Conceivably, the asymmetry factor may be negative if the phase function
is peaked at the backward directions (90-180°). For Mie particles whose
phase function has a general sharp peak at 0° scattering angle (e.g., see
Fig. 5.11), the asymmetry factor denotes the relative strength of forward
scattering. The parameters band (1 - b) can be interpreted as the integrated
fraction of energy backscattered and forward scattered, respectively. Thus,
it is apparent in Eq. (6.41) that the multiple scattering contribution in the
two-stream approximation is represented by the upward and downward
intensities weighed by the appropriate fraction of the forward or backward
phase function. The upward intensity is strengthened by its coupling with
the forward fraction (0-90°) of the phase function plus the downward in-
tensity which appears in backward fraction (90-180°) of the phase. A similar
argument holds for the downward intensity.

Equations (6.41a) and (6.4lb) represent two first-order inhomogeneous
differential equations. Let M = Ii + It and N = Ii - It, and note that
(1 - 2b) = g; then by subtracting and adding, Eq. (6.41) becomes

dM
f-ll �~ = (1 - wg)N - (S- - �S�+�)�e�~�r�/�W�!�, (6.43a)

dN
f-ll �~ = (1 - w)M - (S- + S+)e-r/i'O.

Further, by differentiating both equations with respect to r, we obtain

d 2M dN (S- - S+)
f-ll -d2 = (1 - �w�g�)�~�d + e-r//lO

,

r r f-lo

d
2N

_ (1 -) dM + (S- + S+) �~�r�/�/�l�Of-ll -- - - ill - e
dr 2 di f-lo

Upon inserting Eqs. (6.43b) and (6.43a) into Eqs. (6.44a) and (6.44b), re-
spectively, we find

(6.45a)

(6.45b)



6.2 Approximations for Radiative Transfer

where the eigenvalue is given by

k2 = (1 - w)(1 - wg)/f.1I

and
(1 - wg)(S- + S+) S- + S+

Z1 = - 2 + ,
f.11 f.11f.10

(1 - w)(S- - S+) S- + S+
----2;;----- + ,

f.11 f.11f.10
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(6.46)

(6.47)

Equation (6.45) represents a set of second-order differential equations,
which can be solved by seeking first the homogeneous part and then by
adding a particular solution. In seeking the homogeneous solution, the
homogeneous parts of Eq. (6.43) need to be satisfied so that there are only
two unknown constants involved. Straightforward analyses yield the solu-
tions

where

It = 1('r:,f.11) = KvekT+ Hue- kT+ Be-TIM,

It = I(r, -f.11) = KuekT+ Hve- kT+ ye-TIJlo,

(6.48)

(6.49)

v = (1 + a)/2, u = (1 - a)/2, (6.50)

a2 = (1 - w)/(l - wg), (6.51)

s = (0: + [3)/2, Y = (0: - [3)/2, (6.52)

0: = Z1f.16/(1 - f.16k2), [3 = Z2f.16/(1 - f.16k2). (6.53)

The constants K and H are to be determined from the diffuse radiation
boundary conditions at the top and bottom of the scattering layer. For
boundary conditions given in Eq. (6.30), we get

K = _(sve-TIIJlo - yue-hl)/(v2ehl - u2e- kT1), (6.54)

H = _(sue-TIIJlo - yve-hl)/(v2ehl - f.12 e-h1 ) . (6.55)

Once the upward and downward intensities have been evaluated, the
upward and downward diffuse flux densities are given simply by

(6.56)

This is the two-stream approximation for radiative transfer.
In a similar approach, we may expand the intensity component in Eq.

(6.15) [see also Eq. (6.40)] as

I(r,f.1) = Io(r) + I 1(r)f.1 (-1 �~ f.1 �~ 1). (6.57)
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And by letting N = I, we have
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Upon integrating Eq. (6.58) and Eq. (6.58) times p both over u, the following
two first-order differential equations are derived. They are

(6.59)

(6.60)

The reader is invited to derive the solutions for 10 and Ii' subject to radiation
boundary conditions given by Eq. (6.30).

Once the 10 and L, have been obtained, then the upward and downward
diffuse flux densities are

Fi(I') = 2n fo
l

[Io(r) + pIl(r)Jpdp = n[Io(r) + �~�I�l�(�r�)�]�,

Ft(r) = 2n fo-
l

[Io(r) + pIl(r)Jpdp = n[Io(r) - �~�I�l�(�r�)�]�.
(6.61)

The foregoing analysis constitutes the so-called Eddington's approxi-
mation. It is evident that a two-term expansion in the intensity component
is utilized, and its concept of simplification is similar to that of the two-
stream approximation.

Now returning to Eq. (6.40), we may consider the approximation for
Eq. (6.40) a step further and assume that j = -1, - 2,1,2 and 1=0,1,2,3.
Consequently, four first-order, inhomogeneous differential equations can
be derived. Thus, the solution of the four-stream approximation for radiative
transfer may also be derived analytically (Liou, 1974).

Tables 6.2-6.4 present numerical results of reflection and total trans-
mission (diffuse plus direct) for two-stream, four-stream, and high-order
discrete stream for anisotropic scattering discussed in Section 6.3.3. The
reflection r, and the diffuse (td if ) and direct (td ir ) transmission for solar
radiation are defined by [also see Eqs. (6.109) and (6.110)]

td i r = exp( - r dPo).

The computations were all made for the analytic Henyey-Greenstein phase
function
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TABLE 6.2 Comparisons ofReflection and Transmission (Direct + Diffuse) as Computed by the Discrete-Ordinates Method (DOM) with >
Discrete Streams of2, 4, 8,and 16 and by the Doubling Methodfor Conservative Scattering; w = 1 ..........,

0

Reflection Transmission
§..,
0".
0,[ Method /10: 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 ='"Z'..,

0.25 DOM,2 0.41133 0.18018 0.07635 0.02109 -0.01294 0.58867 0.81982 0.92365 0.97891 1.01294 �~.,
4 0.40339 0.15250 0.05743 0.02457 0.03221 0.59661 0.84750 0.94257 0.97542 0.97593 e:
8 0.40985 0.15185 0.06937 0.03884 0.02114 0.59015 0.84815 0.93063 0.96116

.,
0.97888 a.

'"16 0.41768 0.15776 0.07165 0.03797 0.02246 0.58239 0.84229 0,92842 0.96206 0.97741 .....,
Doubling 0.41610 0.15795 0.07179 0.03801 0.02250 0.58390 0.84205 0.92821 0.96200 0.97751

..,.,
='"DOM, 2 0.51962 0.36837 0.22559 0.11158 0.02389 0.48222 0.63163 0.77441 0.88842 0.97611 '"..,4 0.56631 0.37569 0.22498 0.13468 0.09826 0.43368 0.62431 0.77501 0.86531 0.90173

8 0.58967 0.38728 0.24037 0.15066 0.09582 0.41034 0.61273 0.75963 0.84934 0.90424
16 0.58567 0.38676 0.24068 0.15019 0.09654 0.41440 0.61337 0.75951 0.84991 0.90249

Doubling 0.58148 0.38571 0.24048 0.15019 0.09672 0.41852 0.61430 0.75952 0.84981 0.90328

4 DOM,2 0.68564 0.59282 0.49999 0.40737 0.31612 0.31436 0.40718 0.50001 0.59263 0.68388
4 0.73722 0.62493 0.52120 0.42825 0.34962 0.26278 0.37507 0.47880 0.57174 0.65036
8 0.73877 0.61974 0.52046 0.43052 0.34806 0.26124 0.38026 0.47953 0.56948 0.65203

16 0.73541 0.61830 0.51977 0.42964 0.34776 0.26469 0.38190 0.48053 0.57051 0.65077
Doubling 0.73254 0.61732 0.51932 0.42945 0.34823 0.26746 0.38269 0.48069 0.57055 0.65178

16 DOM,2 0.86860 0.82980 0.79100 0.75220 0.71340 0.13140 0.17020 0.20900 0.24780 0.28660
4 0.88407 0.83459 0.78881 0.74721 0.71005 0.11592 0.16540 0.21118 0.25278 0,28993
8 0.88397 0.83127 0.78659 0.74699 0.70755 0.11604 0.16873 0.21260 0.25300 0.29254

16 0.88240 0.83055 0.78702 0.74642 0.70627 0.11770 0.16965 0.21329 0.25373 0.29225
Doubling 0.88103 0.82995 0.78659 0.74618 0.70722 0.11897 0.17005 0.21342 0.25382 0.29279

........
00
'0
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TABLE 6.3 Same as Table 6.2, exceptfor the Single-scattering Albedo ill of0.95

Reflection Transmission

'1 Method Ji,o: 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

0.25 DOM,2 0.38739 0.16913 0.07140 0.01942 -0.01258 0.55674 0.79643 0.90463 0.96228 0.99780
4 0.37699 0.14149 0.05281 0.02242 0,02231 0,56058 0,82043 0,92134 0,95860 0,96318
8 0.37921 0.13924 0.06352 0,03568 0,01940 0.55067 0.81933 0.90969 0.94519 0.96576

16 0.38384 0.14389 0.06531 0.03466 0.02056 0.54098 0.81302 0.90728 0.94583 0.96451
Doubling 0.38124 0.14369 0.06530 0.03464 0.02055 0.54162 0.81249 0.90699 0.94571 0.96439

DOM, 2 0.47866 0.33481 0.20147 0.09620 0.01565 0.42640 0.56941 0.71177 0.82725 0.91672 0-,

4 0.51064 0.32845 0.19197 0.11336 0.08455 0.36991 0.54933 0.70281 0.80215 0.85086
8 0.52254 0.33114 0.20309 0.12721 0.08069 0.34357 0.53305 0.68700 0.78768 0.85154 �~=

16 0.51657 0.32962 0.20270 0.12612 0.08129 0.34647 0.53302 0.68625 0.78751 0.85072 �~
Doubling 0.51164 0.32828 0.20233 0.12560 0.08123 0.34963 0.53370 0.68629 0.78743 0.85052 '"[fJ,.,

4 DOM,2 0.58357 0.47900 0.38080 0.28822 0.20120 0.20988 0.27631 0.34604 0.41952 0.49574 �~
4 0.60735 0.47440 0.36883 0.28929 0.23531 0.16090 0.23578 0.31347 0.39447 0.47611 '"5°
8 0.60317 0.46306 0.36689 0.29228 0.22966 0.15970 0.23803 0.31335 0.39268 0.47448 �~

16 0.59728 0.46062 0.36550 0.29058 0.22963 0.16138 0.23855 0.31346 0.39286 0.47412 5'

Doubling 0.59296 0.45923 0.36491 0.29027 0.22942 0.16294 0.23902 0.31360 0.39289 0.47396
"l:I

�~
16 DOM,2 0.62095 0.52820 0.44243 0.36286 0.28886 0.01681 0.02213 0.02772 0.03363 0.03994 :rc

4 0.63151 0.50984 0.41595 0.34830 0.30531 0.01426 0.02088 0.02776 0.03509 0.04312 e;
a

8 0.62675 0.49829 0.41336 0.35026 0.29829 0.01416 0.02104 0.02764 0.03479 0.04308 [
16 0.62102 0.49581 0.41182 0.34839 0.29799 0.01431 0.02110 0.02765 0.03481 0.04305 g

Doubling 0.61691 0.49445 0.41122 0.34804 0.29771 0.01445 0.02114 0.02767 0.03482 0.04304 e
'"'C=-'"..
'"'"



Q'I
N

TABLE 6.4 Same as Table 6.2, except for the Single-scattering Albedo OJ of 0.8 >:g..
0

Reflection Transmission !::i.
S

T , Method J.lo: 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 �~
=rIO
0-

0.25 DOM, 2 0.31802 0.13747 0.05739 0.01489 -0.01125 0.46566 0.72916 0.84979 0.91426 0.95403 ..
4 0.30269 0.11116 0.04040 0.01674 0.01746 0.46032 0.74403 0.86090 0.91033 0.92623

�~
IlO

8 0.29599 0.10578 0.04799 0.02714 0.01473 0.44354 0.73879 0.84949 0.89808 0.92728 e:
�~16 0.29406 0.10781 0.04888 0.02608 0.01558 0.43120 0.73272 0.84795 0.89947 0.92679
"Doubling 0.28961 0.10686 0.04855 0.02590 0.01547 0.43017 0.73172 0.84756 0.89938 0.92669 ..,..
!

DOM,2 0.37519 0.24977 0.14279 0.06101 -0.00064 0.29023 0.41377 0.55267 0.67036 0.76333 rIO
(:;'

4 0.37646 0.22124 0.12003 0.06785 0.05425 0.22724 0.37500 0.52936 0.64559 0.72003 ..
8 0.36938 0.21105 0.12471 0.07775 0.04901 0.20192 0.35487 0.51471 0.63379 0.71702

16 0.36071 0.20875 0.12396 0.07644 0.04942 0.20416 0.35597 0.51601 0.63571 0.71784
Doubling 0.35487 0.20714 0.12342 0.07622 0.04929 0.20556 0.35621 0.51606 0.63580 0.71772

4 DOM,2 0.40411 0.29377 0.20057 0.12070 0.05152 0.06605 0.09165 0.12281 0.16164 0.20828
4 0.39835 0.25840 0.16792 0.11604 0.09563 0.04412 0.07045 0.10648 0.15660 0.22130
8 0.38582 0.24266 0.16755 0.12180 0.08907 0.04453 0.07115 0.10625 0.15573 0.21918

16 0.37725 0.24028 0.16677 0.12063 0.08944 0.04505 0.07167 0.10710 0.15690 0.21959
Doubling 0.37148 0.23862 0.16615 0.12036 0.08925 0.04539 0.07179 0.10718 0.15697 0.21953

16 DOM, 2 0.40571 0.29599 0.20354 0.12458 0.05636 0.00018 0.00026 0.00034 0.00045 0.00060
4 0.39914 0.25968 0.16985 0.11886 0.09945 0.00026 0.00042 0.00063 0.00094 0.00138
8 0.38661 0.24394 0.16947 0.12458 0.09280 0.00026 0.00042 0.00062 0.00091 0.00138

16 0.37805 0.24157 0.16870 0.12343 0.09316 0.00027 0.00042 0.00062 0.00092 0.00139
Doubling 0.37229 0.23990 0.16808 0.12315 0.09297 0.00027 0.00042 0.00062 0.00092 0.00139

.......
'00
.......
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with an asymmetry factor g = 0.75. Single-scattering albedos of 1, 0.95,
and 0.8 were used. Also shown in these tables are results computed from the
adding method discussed in Section 6.6 for comparison purposes. The ac-
curacy of the doubling method as described by van de Hulst and Grossman
(1968) is about 5 decimal points. For discrete streams of 16, the values of
reflection and transmission generally are accurate up to �~ 3-4 digits for
all three cases, as compared to the doubling computations. The accuracy
decreases to �~ 2-3 decimal points for discrete streams of 8. For discrete
streams of 4, small deviations occur, with the absolute differences, in general,
on the order of �~�0�.�0�l�. The two-stream approximation appears to show
fairly good accuracy for r 1 = 4 and 16 for both conservative and noncon-
servative scattering. However, the two-stream approximation tends to
produce larger errors as the optical thickness descreases, especially for
reflection because the values are generally small. At near-normal incidence,
negative values are seen at T 1 = 0.25 for both cases.

The accuracy of Eddington's approximation, as illustrated by Shettle
and Weinman (1970), is about the same as the two-stream approximation.
Thus, both approximations should be used with care for optically thin
cases and when large absorption is involved.

Because of the unsatisfactory accuracy of the Eddington approximation,
Joseph et al. (1976) developed an empirical adjustment in which the frac-
tional forward peak of the scattering phase function was taken into account
by redefining the asymmetry factor, the single-scattering albedo, and the
optical depth in the forms

g' = g/(l + g),

These empirical adjustments lead to a considerable improvement in the
reflection and transmission computation.

6.3 DISCRETE-ORDINATES METHOD
FOR RADIATIVE TRANSFER

6.3.1 General Solution for Isotropic Scattering

For simplicity in introducing the discrete-ordinates method for radiative
transfer, we assume isotropic scattering, i.e., the scattering phase function
P(j1,¢; u', ¢') = 1. We further define the azimuthally independent intensity
in the form

I l21tI(T,j1) = - I(T; j1, ¢)d¢.
2n 0

(6.62)
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Hence the equation of transfer shown in Eq. (6.22) becomes

�~�~�~ IDJI �I�D�~/l �~ = I(r,/l) - 2 -1 I(r,/l')d/l' - 4 e-r/I'O.
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(6.63)

Now replacing the integral by a summation, according to Gauss's formula
discussed in Section 6.2.2, and letting l, = I(r, /li), we obtain

i = -n, ... , n, (6.64)

where Lj denotes summation from - n to n, i.e., 2n terms.
The solution of Eq. (6.64) may be derived by seeking first the general

solution for the homogeneous part of the differential equation and then
by adding a particular solution. For the homogeneous part of the differential
equation, we set

(6.65)

where gi and k are constants. Substituting Eq. (6.65) into the homogeneous
part of Eq. (6.64), we find

(6.66)

This implies that g; must be in the following form with a constant L:

g; = Lj(I + /l;k). (6.67)

(6.68)

With the expression of gi given by Eq. (6.67), we obtain the characteristic
equation for the determination of the eigenvalue k as

I = ID" aj = _ �~ aj
L.. WL.. 22'2 j I + ujk j = 1 I - /lj k

For ID < I, it is apparent that Eq. (6.68)admits 2n distinct nonzero eigenvalues
which occur in pairs as ± k., (j = I, ... , n). Thus the general solution for the
homogeneous part is

L.
I· = L J e- k j r

, j 1 + /likj .

For the particular solution, we assume

I, = (wF oj4)h;e-
r/l' o,

where hi are constants. Inserting Eq. (6.70) into Eq. (6.64), we find

hJl + /lJ/lo) = (IDj2) L ajh j + 1.
j

(6.69)

(6.70)

(6.71 )
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Hence, the constants hi must be in the form

hi = yj(1 + /1J/1o)

with y to be determined from Eq. (6.71), i.e.,

(6.72)

(6.73)

i = - n, . . . ,no (6.74)

Adding the general and particular solution, we get

L· wFoYI. = I J e- k j r + e-r//lO

, j 1 + /1ikj 4(1 + /1J/1o) ,

The unknown coefficients of proportionality L, are to be determined from
the boundary conditions imposed [e.g., see Eq. (6.30)].

The next step is to introduce Chandrasekhar's H function to replace the
constant y. We consider the function

wz 2 a. n a.
T(z) = 1 - - I _J_ = I - wz 2 I 2 J 2' (6.75)

2 j Z + /1j j= 1 Z - /1j

This function is a polynomial of degree 2n in z, and if we compare it with the
characteristic equation (6.68), we find that z = ± Ijkj for T(z) = O. Thus we
must have

n nn (Z2 - /1J)T(z) = const n (1 - kJZ2)
j=1 j= 1

(6.76)

since the two polynomials of degree 2n have the same zeros. For z = 0 we
find that

n

const = n (- /1J).
j=1

Thus,

T(z) = (-It/1i ... /1;; j01 (1 - kJZ2)Ij01 (Z2 - /1J).

We now introduce the H function as

H( ) = 1 ni=1(/1 + /1j).
/1 /11 ... /1nni=1(1+kj/1)

In terms of the H function,

y = IjT(z) = H(z)H( - z).

(6.77)

(6.78)

(6.79)
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So, the complete solution to the isotropic, nonconservative radiative transfer
equation in the nth approximation is now given by

(6.80)

Figure 6.3 illustrates a distribution of eigenvalues for isotropic scattering
with a single-scattering albedo ill = 0.9 using four discrete streams tabulated
in Table 6.1. The characteristic equation denoted in Eq. (6.68) may be written
in the form

(6.68a)

It is clear that for ill =1= 0, f(k j ) ---+ ± 00, as kj ---+ J1j-l. In the figure, the same
intervals between each J1j- 1 were divided so that lines across the zeros can be
clearly seen. The eigenvalues occur in pairs and there exists one, and only one,
eigenvalue in each interval, which can be proven mathematically. The eigen-
value in the discrete-ordinates method for radiative transfer may be physically
interpreted as an effective extinction coefficient that when multiplied by the
normal optical depth represents an effective optical path length in each
discrete stream.

For conservative scattering ill = 1,we note that the characteristic equation
(6.68) admits two zero eigenvalues, namely, k 2 = O. Upon using the relation

n I Ii I.L aj J1j = -1 J1 dJ1 = 215z1(2l + 1),
J= -n

it can be shown that

I, = b(r + J1i + Q)

even,

odd,

(6.81)

satisfies the homogeneous part of the differential equation, with band Q as
two arbitrary constants of integration. Thus, the complete solution to the
isotropic radiative transfer equation in the nth approximation may be
written

(6.82)
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6.3.2 The law of Diffuse Reflection for Semi-Infinite
Isotropic Scattering Atmospheres
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Assume that there is no diffuse downward and upward radiation at the top
and base of a semi-infinite atmosphere so that

1(0, - flJ = 0, (6.83)

Inserting the second boundary condition into the solution to the isotropic
radiative transfer equation in the nth approximation denoted in Eq. (6.80),
we obtain

-1 L.
1( +) - °-" J kjT!Tl' fl.i - -. L., 1 _ Ic, e ,

J= -n fl., J

i = 1, ... ,n. (6.84)

It is apparent that L j = °(j = - n, . . . , -1) in order to satisfy the boundary
condition for a semi-infinite atmosphere. Thus,

We define

Thus,

(6.86)

S(fl.i) = 1(0, - J1,;) = 0,

and the reflected intensity

i = 1, ... , n, (6.87)

1(0,fl.) = S(- fl.).

Moreover, we consider the function
n

(l - fl./fl.o) n (1 - kjfl.)S(fl.),
j= 1

(6.88)

(6.89)

which is a polynomial of degree n in J1, and vanishes for J1, = fl.i' i = 1, ... ,n.
Hence, this function must be equal to ni=l(J1, - fl.J apart from a constant
value. We may write

n ( -It n
(1 - J1,/J1,o) n (1 - kjJ1,)S(J1,) = const . . . n (J1, - fl.). (6.90)

j=l J1,1 J1,nj=l

Upon employing the definition of the H function defined in Eq. (6.78), we
obtain

S(fl.) = const H( - J1,)/(l - J1,/J1,o)· (6.91 )
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To obtain the value of the constant, we observe

lim (I - )1//10)S(Ji,) = const H( - /10)·
Ji"""'*J.lO

But from Eq. (6.86) we have

lim (l - /11/1o)S(/1) = twFoH(/1o)H( - /10)·
Jj-!1O

Comparing Eq. (6.92) and Eq. (6.93), we find

const = twFoH(/1o),

and

(6.92)

(6.93)

(6.94)

(6.95)

The reflected intensity for a semi-infinite, isotropic scattering atmosphere is
then given by

(6.96)

Thus the diffuse reflection can be expressed in terms of the H function. This
simple expression has been used to interpret the absorption line formation
in cloudy atmospheres of other planets. Exercise 6.7 illustrates the applica-
bility of the law of diffuse reflection.

6.3.3 General Solution for Anisotropic Scattering

To solve Eq. (6.14), we first seek the solution for the homogeneous part
of the differential equation and then add a particular solution for the in-
homogeneous part. After some mathematical manipulation, it is given in
the form

]m(r, /1;) = L Lj4>j(/1;)e-k j r + zm(/1;)e- r/l'O,
j

(6.97)

(6.98)

where the eigenfunction derived from the associated homogeneous system is

1 N

4>j(/1;) = 1 + km I �w�'�{�'�~�'�{�' P'{'(/1;),
/1i j �1�~�0

and the Z function is

(6.99)
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The �~ function has the recursion form RADCLIFF&:
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2l + 1 - WI l + m
k(l - m + 1) �~�7�' - l - m + 1 �~�7�'�-�1�' (6.100)

(6.1°1)

Finally, the eigenvalues kj can be determined from the characteristic equa-
tion described by

1 = 0)2- L 1 :j .k[I �W�T�~�T�(�k�)�P�T�(�J�l�)�P�:�(�J�l�)�J�.
1 Jll .l.=m

Equation (6.101) is of order n in k 2 and admits, in general, 2n distinct non-
vanishing eigenvalues which must occur in pairs. For strong anisotropic
scattering, having a sharp phase function, a number of eigenvalues are
normally contained in the interval (0, Jl;; 1), and the eigenvalue pattern is
unsymmetric, differing considerably from that in Fig. 6.3.

Now the unknown coefficients Lj are to be determined, subject to the
radiation boundary conditions. For the simple boundary conditions given
by Eq. (6.30), and in view of the intensity expansion in Eq. (6.13), we shall
have

�I�:�~�O�(�r�~�~�:�~�:�~�} for i = 1, ... , nand m= 0, ... , N. (6.102)

We may then determine Ljm times independently with the final result given
by Eq. (6.13). At this point, the analytic solution for Eq. (6.14) is therefore
complete.

The solution expressed in Eq. (6.97) is valid only for nonconservative
scattering because when W = 1, k2 = °will satisfy the characteristic equation
for m = 0, and �~�~�(�k�) becomes indefinite. Thus, a different solution has to be
derived. In conservative cases since there is no absorption, the flux ofradia-
tion normal to the plane of stratification is constant. It can be shown that the
transfer equation admits a solution of the form for m = 0:

n-l

IO(r; JlJ = L �L�J�¢�J�(�J�l�J�e�-�k�~�r
j=-(n-l)

+ [(1 - wd3) + �J�l�J�L�~�n + �L�~ + ZO(JlJe-r/l'o. (6.103)

The discrete-ordinates method gives the analytical solution of the radiative
transfer equation, and therefore the internal radiation field, as well as the
reflected and transmitted intensities, can be evaluated without extra compu-
tational effort. For the azimuthally independent term, the method yields
rather accurate results even for n = 2 or 4 (Liou, 1973). These may be suffi-
ciently accurate for computations of the flux density in man)" applications.
Numerical exercises using the discrete-ordinates method for the azimuthally
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dependent case, however, have not been carried out for general anisotropic
phase functions.

6.4 PRINCIPLES OF INVARIANCE

6.4.1 Definitions of Various Scattering Parameters

The method of principles of invariance for radiative transfer seeks certain
physical statements and mathematical formulations regarding the fields of
reflection and transmission. The radiation field from this method is not
derived directly from the equation of transfer, and so it differs from the
approximate and exact solutions for radiative transfer discussed in the
previous sections.

It is necessary to define and clarify a number of parameters which have
been used in literature in order to introduce the principles of invariance and
other multiple-scattering problems. We find it convenient to express the
solutions to the multiple-scattering problem in terms of reflection function R
and transmission function T in the forms [see Eqs. (6.31) and (6.32)]

1r(O, Ji, ¢) = �~ SOl" SOl R(Ji,¢; Ji',¢')1o(- u', ¢')Ji' dJi'd¢', (6.104)

1lrI' - Ji, ¢) = �~ S:" SOl T(Ji, ¢; Ji',¢')1o(- u', ¢')Ji' dp' d¢', (6.1 05)

where 1o(- u, ¢) represents the intensity of sunlight incident on the top of the
scattering layer. It suffices for most practical problems to approximate it as
monodirectional in the form

(6.106)

where 1J is the Dirac delta function, and nF0 denotes the incident solar flux
density perpendicular to the incident beam. Thus, we find from Eqs. (6.104)
and (6.105) the definitions of reflection and transmission functions

R(Ji,¢; Jio,¢o) = I r(O, u, ¢ )/(JioF0)'

T(Ji, ¢; Jio,¢o) = 1lrI' - u; ¢ )/(JioF0)'

(6.107)

(6.108)

Note here that 1lrI' - u, ¢) represents the diffusely transmitted intensity,
which does not include the directly transmitted solar intensity nFoe-rl!/lo.
This quantity represents the reduced incident radiation, which penetrates to
the level '[1 without suffering any extinction process. In cases where polariza-
tion is included, i.e., where the four Stokes parameters are considered for the
incident intensity, Rand T are composed of four rows and four columns and
are called reflection and transmission matrices. The reflection and trans-
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(6.110)

mission functions also have been referred to as reflection and transmission
coefficients by Ambartsumyan (1958) and Sobolev (1975). In satellite mete-
orology, a parameter called bidirectional reflectance, which is analagous to
the reflection function, is widely used.

On the basis of Eqs. (6.107)and (6.108), we may define the reflection r (also
called local or planetary albedo) and transmission (diffuse) t associated with
reflected (upward) and transmitted (downward) flux densities in the forms

FJAO) I r21t r1
r(/1o) = -F- = - .lo .lo R(/1,<p; /10, <Po)/1d/1d<p, (6.109)

n/10 0 tt

F,trCr 1) I S21t Sl
t(/1o) = F =- 0 0 T(/1,<p;/10,<Po)/1d/1d<p,

n/10 0 n

where the definitions of the upward and downward diffuse flux densities
are given by Eqs. (6.16) and (6.17). Note that the direct transmission is
simply e -'l/llo. In a similar manner, the absorption of the atmosphere, bounded
by the optical depths of 0 and t 1, may be obtained from the net flux density
divergence (including the direct transmission component) at levels of 0
and r b normalized with respect to n/1oFo For the azimuthally independent
case, Eqs. (6.109) and (6.110) reduce to

r(/1o) = 2 fo
l

R(/1,/10)/1 du, (6.111)

t(/1o) = 2 fo
1

T(/1, /10)/1 du, (6.112)

The total amount of radiant energy per unit time incident on the planet
having a radius a is na 2 nFo. To find the flux of energy reflected by the planet,
we consider on the disk a ring with radius a' and width da, where a' is the
projected distance from the center of the disk (see Fig. 6.4). Hence, the

Local zenith

Fig. 6.4 Geometry for the definition of spherical albedo.
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(6.114)

flux of energy reflected by this ring would be r(flo)nF02na' da. But a' = a
sin 80 , and da' = a cos 80 d80, so we may write this flux of energy as
2na2nFor(flo)flo dflo· The flux of energy reflected by the entire planet is
therefore

ft(O) = 2na2nF
o fo

1
r(flo)flodflo. (6.113)

The spherical (or global) albedo, which represents the ratio of the energy
reflected by the entire planet to the energy incident on it, is then given by

- ji(O) Sl
r = 2 = 2 r(flo)flo dflo·tta nFo 0

Similarly, the global diffuse transmission is

- f)('l) Sl
t = 2 F = 2 0 t(flo)flo dflo,

tia tt 0
(6.115)

and the global direct transmission is simply 2ge-rtilloflodflo. Likewise, the
global absorption may also be expressed in terms of absorption.

Chandrasekhar (1950) expresses the resulting laws of diffuse reflection
and transmission for a finite atmosphere with an optical depth, 1 in terms
of a scattering function S and a transmission function T, (diffuse), which
differ from the parameters defined in Eqs. (6.104) and (6.105), in the forms

1,(0,fl, ¢) = �4�~�f�l f0
2

7< fo
1

S(fl, ¢; u', ¢')Io(- u', ¢') dfl' dib', (6.116)

1(('10 - p; ¢) = �4�~�f�l f0
2

7< fo1TJfl,¢; u', ¢')Io( -fl', ¢')dfl' d¢', (6.117)

where T; is utilized to distinguish from T described previously. Upon sub-
stituting Eq. (6.106) into Eqs. (6.116) and (6.117), we obtain the definitions
of Chandrasekhar's scattering and transmission functions as

S(fl,¢; flo,¢o) = (4fl/Fo)IJO,fl,¢),

Tc(fl,¢; flo,¢o) = (4fl/Fo)I ((' 1' -fl,¢)·

(6.118)

(6.119)

The introduction of the factor fl in the intensity parameters gives the required
symmetry of Sand T, in the pair of variable (fl, ¢) and (flo, ¢o) such that

S(fl, ¢; flo, ¢o) = S(flo, ¢o; u, ¢),

Tc(fl, ¢; flo, ¢o) = Tc(flo, ¢o; u, ¢).

(6.120)

(6.121)

This is the so-called Helmholtz's principle of reciprocity, which is stated
here without proof.
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6.4.2 Principles of Invariance for Semi-Infinite Atmospheres
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Consider a flux of parallel solar radiation nF0 in a direction defined by
( - flo, cPo) ( - flo denotes that the light beam is downward) incident on the
outer boundary of a semi-infinite, plane-parallel atmosphere. The principles
of invariance originally introduced by Ambartsumyan (1942, 1958)state that
the diffuse reflected intensity from such an atmosphere can not be changed
if a plane layer of finite optical depth, having the same optical properties as
those of the original atmosphere, is added. Let the optical depth of the added
layer be �~�r�. This is so small that �(�~�r�f can be neglected when it is compared
with �~�r itself. For simplicity in presenting the principles of invariance, we
neglect the azimuthal dependence of the diffuse reflected intensity and define
the reflection function in terms of the diffuse reflected intensity at the top of a
semi-infinite atmosphere 1(0,fl) in the form [see Eq. (6.107)J

(6.122)

In reference to Fig. 6.5, we find that the reduction or increase of the
reflection function, after the addition of an infinitesimal layer, follows these
principles:

(1) The differential attenuation of the reflection function III passing
through �~�r downward, based on Eq. (6.1) �(�~�r = ?feN�~�z�) is

(6.123)

6T

T=O

(I) (2) (3) (4) (5)

Fig. 6.5 The principles of invariance for a semi-infinite, plane-parallel atmosphere. The J1 and
- J1 denote the upward and downward directions, respectively. Black dots show that scattering
events take place in which the scattering phase function is required. The directional representa-
tion in the argument is such that the emergent angle is stated first; then it is followed by the
incident angle. A similar rule governs the argument of the reflection function.
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The reflection function at r = 0 is now (R + �~�R�~�)�, which is again attenuated
in passing through �~�r upward. Thus,

(6.124)

The total attenuation is therefore

(2) However, �~�r may scatter directly in the direction /1 a part of solar
flux nF0 incident on it, and according to Eq. (6.3), we find the additional
reflection

(3) In addition, �~�r may scatter a part of the solar flux in the direction /1'
onto the boundary r = o. The diffuse light beam then undergoes reflection
from this surface, and this additional reflection, analagous to Eq. (6.2), is
given by

1 {jj (21r (1 �~�r
�~�R�3�=�-�F 4Jo d¢'Jo I(O,/1)P(-/1',-/1o)d/1'-,

/1oo n /1

(jj �~�r 11 ,= -2 - R(/1, /1 )P( - /1', - /10) du'.
/10 0

(6.127)

(4) Moreover, �~�r�, after attenuating a fraction of the light beam diffusely
reflected from the boundary r = 0 in the direction /1', may scatter a part of
it in the direction /1. This incremental reflection is given by

�~�R�4 = �~�F 4
W

(21t d¢' (1 P(/1, /1')1(0,/1')d/1' �~�r
/10 0 tt Jo Jo /1

W �~�r (1 " ,
= 2. -;; J0 P(/1, /1 )R(/1 , /10) d/1 . (6.128)

(5) Finally, the unscattered component of the solar flux nF0' which is
reflected from the boundary r = 0 in the direct /1", is scattered by �~�r back
to r = 0 in the different direction /1', and again is reflected from the surface
r = 0 in the direction /1. This additional contribution may be expressed by



6.4 Principles of Invariance 205

x [S:" dcjJ" SOl P( - u', fl")1(0, fl") dfl"] �~�~

wL1, fal R(fl, fl') du' [SOl P( - u', fl")R(fl", flo) dfl"} (6.129)

On the basis of the principles of invariance already stated, we shall have

(6.130)

Thus,

R(fl, flo) �(�~ + �~�) = 4 W {P(fl, - flo) + 2fl SOl R(fl, J1')P( - p', - flo) dfl'
fl flo flflo

+ 2flo SOl P(fl, fll)R(fl', flo) dJ1' + 4flflo SOl R(fl, J1') du'

X [SOl P(_fl', fl")R(fl", flo) dfl"]}' (6.131)

For a simple case of isotropic scattering, Eq. (6.131) becomes

R(fl, flo)(fl + flo) = �~ [1 + 2fl SOl R(fl, fl') dfl' + 2flo SOl R(fl', flo) du'

+ 4flflo SOl R(fl', flo) du' SOl R(fl, fl") dfl"]

= �~ [1 + 2fl SOl R(fl, fl') du'I1+ 2flo SOl R(fl', flo) dfll].

(6.132)

Inspection ofEq. (6.132) reveals that ifit is satisfied by the function R(fl,flo),
it must also be satisfied by the function R(flo ,fl). And since Eq. (6.132) can
have only one solution, R(fl, flo) must be symmetrical, i.e.,

(6.133)

With this relationship, which we state here without rigorous mathematical
proof, we may define

such that
R( ) _ �~ H(fl)H(flo)

fl, flo - 4 + .
fl flo

(6.134)

(6.135)



206 6 Multiple Scattering in Plane-Parallel Atmospheres

(6.136)

If we now review the analyses in Section 6.3.2, we find this expression is
exactly the same as that in Eq. (6.96). It is indeed an exact solution for the
semi-infinite atmosphere. To examine the H function we insert Eq. (6.135)
into (6.134) to obtain

- H(')d'
H( ) = I +::! H( ) fl Jl Jl.

Jl 2 Jl Jl Jo J1 + J1'

It is now clear that the solution of Eq. (6.132) is reduced to solving the H
function given in Eq. (6.136). Its exact value in this case can be obtained by
selecting an approximate value and then carrying out appropriate iterations.
We first seek the mean value of H in the form

(6.137)

(6.138)

From Eq. (6.136) we have

fl H( )d = I + �~ fl fl H(Jl)H(Jl')J1 d d '.
J0 J1 J1 2 J0 J0 J1 + J1' J1 J1

Upon interchanging J1 with J1', we find that Eq. (6.138) does not vary. Thus,
we may write

fl H( )d = I + W fl fl H(J1)H(Jl')Jl d d '+ W fl fl H(J1)H(Jl')Jl'd d '
Jo J1 J1 4 Jo Jo J1 + Jl' J1 J1 4 Jo Jo J1 + J1' J1 J1

W f1 fl= 1 +"4 Jo H(J1)dJ1 Jo H(J1')dJ1'.

It is apparent that

Ho = I + (w/4)H6.

This gives the solution of H 0 in the form

H 0 == SOl H(J1) dJ1 = (2/w)(1 - >! I - w),

(6.139)

(6.140)

(6.141)

where the positive root is found to be unrealistic because the albedo values
become greater than unity, as evident in Exercise 6.8. To find H(J1) in Eq.
(6.136),we may insert this zero-order approximation into the right-hand side
of Eq. (6.136) to obtain the first approximation for H(J1). The procedure can
be continued until the desirable accuracy is achieved.

6.4.3 Principles of Invariance for Finite Atmospheres

In the last subsection, we described the principles of invariance for a semi-
infinite atmosphere in which only the reflection function is involved. We now
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introduce the general principles of invariance for a finite atmosphere deve-
loped by Chandrasekhar (1950). To be consistent with our previous dis-
cussions, we neglect the azimuthal dependence of the scattering parameters
and use the reflection and transmission functions defined in Eqs. (6.107) and
(6.108), instead of the scattering and transmission functions proposed
originally by Chandrasekhar, as defined in Eqs. (6.118) and (6.119). We note,
however, the relationships

S(fl, flo) = 4flfloR(fl, flo),

T; (fl, flo) = 4flflo Ttp; flo)·

(6.142)

(6.143)

In reference to Fig. 6.6, we find the following four principles governing the
reflection and transmission of a light beam:

(1) The reflected (upward) intensity at level r is caused by the reflection
of the attenuated incident solar flux density nFoe-r//LO, and the downward

o

,

(I) (2)

JL' =JL

I
/

/ / T( '1- r , JL,JL')
I

\
\

\
\

\

(3)

Fig. 6.6 Principles of invariance for a finite atmosphere.

o

,
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diffuse intensity incident on the surface r from the finite optical depth (r 1 - r)
below [see Eqs. (6.104) and (6.105)]. Thus, we find

1(r,j1) = j1oFoe-r/flOR(r1 - r ; j1,j1o) + 2 fo
1

R(r 1 - r ; j1,j1')1(r, -j1')j1' du'.

(2) The diffusely transmitted (downward) intensity at level r is due to the
transmission of the incident solar flux density by the optical depth r above,
and the reflection of the upward diffuse intensity incident on the surface r
from below. Thus, we find

1(r, -j1) = j1oFoT(r; j1,j1o) + 2 fo
1

R(r; j1,j1')1(r,j1')j1' du'. (6.145)

(3) The reflected (upward) intensity at the top of the finite atmosphere
(r = 0) can be taken as the reflection by the optical depth r of the atmosphere
plus the transmission of this atmosphere, the upward diffuse and direct
intensities incident on the surface r from below. Thus, we find

1(O,j1) = j1oFoR(r; j1,j1o) + 2 fo
1

T(r; j1,j1')1(r,j1')j1' du' + e- r/ fl1(r,j1). (6.146)

(4) The diffusely transmitted (downward) intensity at the bottom of the
finite atmosphere (r = r d is equivalent to the transmission of the attenuated
incident solar flux density plus the transmission of the downward diffuse
and direct intensities incident on the surface r from above. Thus, we find

1(r1> - j1) = j10Foe-r/flOT(r 1 - r ; u, j1o) + 2 fo
1

T(r 1 - r ; u, j1')1(r 1 - j1')j1' dp'

(6.147)

To obtain the reflection and transmission functions of a finite atmosphere
with an optical depth of r 1 , we first differentiate Eqs. (6.144)-(6.147) with
respect to r and evaluate the values at r = 0 and r1> where the boundary
conditions stated in Eq. (6.30) can be applied. (For azimuthal1y independent
cases, we have 1(0, - j1) = 0 and 1(r b j1) = 0.) After differentiation with
respect to r, we set r = 0 and r = r 1 for principles (1)and (4)and for principles
(2) and (3), respectively, to obtain the equations

(6.148)
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(6.151)

To eliminate the derivatives of the intensity, we utilize the azimuthally
independent transfer equation [Eq. (6.22)J to find

d1(T,f.1)1 () ill ,1 ( ") (0 ")d"f.1 �~ r= 0 = 1l0F oR T 1; u, f.10 -"2 Jo P u, f.1 I ,f.1 f.1

ill
- "4 F oP(f.1, - f.10),

- f.1 d1(T, - f.1) I = °- �~ SOl P( - u, f.1")1(O, f.1") df.1"
dt T=O 2

ill
-"4 FoP( -f.1, -f.10),

11 �d�1�~�T�~�f�.�1�)�I�T�=�T�l = °- �~ SOl P(f.1, -f.1")1(T1' -f.1")df.1"

ill- - F P(II - II )e-tt!llo4 0 ro' roO ,

(6.152)

(6.153)

(6.154)

(6.155)

In these four equations, f.1 �~ 0. We also note that 1(0,f.1) = f.1oF oR(T 1; u, f.10),
and 1(T b - f.1) = f.1oF 0 T(T1; u, f.10)· Upon substituting Eqs. (6.152) and (6.153),
(6.154) and (6.155), (6.154) and (6.153) into Eqs. (6.148)-(6.151), respectively,
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and rearranging the terms, we obtain

aR(rl;fl,flo) (1 1) W
'" = - -+- R(r l;fl,flo)+-4- P(fl,-tLo)
uri fl flo flflo

+ 2
W

fo
l

R(r l ; fl,fl')P( -fl', -flo)dfl'
flo

+W fo
l

R(rl;fl'fl')dflffo
l

P(-fl',fl")R(r];fl",flO)dfl'}

(6.156)

aT(rl;fl,flo) __ �~�T�(�' )+ W -rli/lOp( _ _ )
'" - r 1 , fl, flo 4 e tL, flo
uri fl flflo

+ Wfo
l

R(r l ; fl,fl')dfl' [fo
l

P(fl', - fl")T(r]; fl",flO)dfl"J

(6.157)

aR(rl;fl,flo) W [(1 1)Jp( )
�-�~�'�-�'�-�-�-�'�-�~ = -- exp - r - + - fl, - flo

ar l 4flflo fl flo

+ )w e-rli/lO f
O

I
T(r l; fl,fl')P(fl', -flo)dfl'

-flo J(

+ Wfo] T(rl; fl,fl')dfl' [fo
l

P(fl', - fl")T(r]; fl",flo) dfl"J

(6.158)
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+ �~ e- T 1
!11 SOl P(-j.1,fl')R(T I;j.1",flo)dfl"

+2
W

SOl T(Tl;fl,f.1')P(-fl',-flo)dfl'
flo

+ wSOl T(Tl; fl,fl')dfl'[S: P( -fl',fl")R(Tl; fl",flO)df.1'J
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(6.159)

Equations (6.156)-(6.159) represent four nonlinear integral equations govern-
ing the complete field of radiation at T = 0 and T = T 1 for plane-parallel
atmospheres of finite optical depths. It should be noted that for simplicity
we have neglected the azimuthal dependence in the reflection, transmission,
and phase functions in the derivation of these four integral equations.
However, it is straightforward to write down the four integral equations for
the azimuthal-dependent case. We further note that as T1 ---+ 00, we have
OR/OT l ---+ 0 and Eq. (6.156) reduces to Eq. (6.131), formulated for a semi-
infinite atmosphere. Equations (6.156) and (6.159) may be obtained by adding
a thin layer (L1T « 1)to the top of a finite atmosphere following the principles
outlined in Section 6.4.2. Moreover, by adding a thin layer to the bottom
of a finite atmosphere, Eqs. (6.157) and (6.158) may be derived. The adding
method is referred to as invariant imbedding (Bellman et al., 1963).

6.4.4 The X and Y Functions

In Section 6.4.2, we showed that the reflection function of a semi-infinite
atmosphere for isotropic scattering is given by the H function. Here, we
shall demonstrate that the reflection and transmission functions of a finite
atmosphere for isotropic scattering are governed by the X and Y functions.
In the case of isotropic scattering, Eqs. (6.156)-(6.159) become

OR(Tl;fl,flo) (1 1) (. )a + - + - R T1, fl, flo
T l fl flo

= w [1 +2flo fl R(Tl;fl",flo)dfl"+2fl fl R(Tl;fl,fl')dfl'
4flflo Jo Jo

+ 4flflo SOl R(T I ; fl, fl') SOl R(T I ; u", flo) dfl'J (6.160)
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oR(,1; JI, JIO)

0'1

= 4;0 [exP{-'l(t+ L)} + 2JIoe-
t
, /1' fo

1
T('l;JI",JIo)dJI"

+ 2JIe-t li llO fo
1

T('l; JI,JI')djI'

+ 4JIJIo fo
1

T(, 1; JI, JI')dJI' fo
1

T(, 1; JI",JIo) dJI'J (6.161)

OT('l; JI, JIo) + �~ T(' )
�~ 'l,JI,JIO
U'l JI

= 4;0 [e- t,/llO + 2JIo fo
1

T(,1; JI",JIo) du' + 2JIe- vsluo fo
1

R(,1; JI, JI') dJI'

+ 4JIJIo fo
1

R(, 1 ; JI, JI')dJI' fo
1

T(, 1; JI",JIo) dJI"J, (6.162)

OT('l; JI,JIo) + �~ T(' )
�~ 'l,JI,JIO
U'l JIo

= 4;0 [e-tl/l' + 2JI fo
1

T('l; JI,JI')dJI' + 2JIoe-t , /1' fol
R('l; JI",/lo)d/'

+ 4JIJIo fo
1

T('l; JI,JI') £1 R('l; JI",JIo)dJI"j. (6.163)

Upon inspection of Eqs. (6.160)-(6.163), we define Chandrasekhar's X
and Y functions in the forms

X(JI) = 1 + 2JI fol
R(, I; JI, JI') dJI',

Y(JI) = e-t,!lL + 2JI fol
T('l; JI,JI')dJI'.

Equations (6.160)-(6.163) now may be expressed by

OR('I;JI,JIO) (1 1) (jja + -+- R('1;JI,JIo)=-4- X(JI)X(JIo),
, I JI JIo JIJIo

OR('I;JI,JIO)= (jj Y(JI)Y(JIo),
0'1 4JIJIo

oT(,1; JI, JIo) 1 (jj
a +-T('1;JI,JIo)=-4- X(JI)Y(JIo),
'1 JI JIJIo

(6.164)

(6.165)

(6.166)

(6.167)

(6.168)
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OT(T 1 ;fl , fJ, 0 ) 1 W
::l + - T(T1 ; /l,/lo) = -4- X(/lo)Y(/l). (6.169)
UTI /lo /l/lo

It is evident that by eliminating OR/OT 1 from Eqs. (6.166) and (6.167), we
obtain

(1 1) WP+ /lo R(r l ; /l,/lo) = 4/l/l
0

[X(/l)X(/lo) - Y(/l)Y(/lo)], (6.170)

and by eliminating OT/OT 1 from Eqs. (6.168) and (6.169), we have

(1 1) W--- T(rl;/l,/lO) =-4-[X(/l)Y(/lo)-X(/lo)Y(/l)]. (6.171)
/l /lo /l/lo

Inserting Eqs. (6.170) and (6.171) into Eqs. (6.164) and (6.165), we find

X(/l) = 1 + /l i
1

tJ;(J1'), [X(/l)X(J1') - Y(/l) Y(/l')] du; (6.172)
Jo /l + /l

Y(/l) = e- T1
!1' + J1 i 1 �~�(�/�l�'�) [X(/l)Y(/l') - X(/l')Y(J1)]dJ1', (6.173)

Jo /l - /l

where the characteristic function tJ;(/l') = w/2. Thus, the exact solutions of
the reflection and transmission functions are now given by the X and Y
functions, which are solutions of the nonlinear integral equations. It is also
clear that for a semi-infinite atmosphere Y(/l) = 0, and the X function defined
in Eqs. (6.164) and (6.172) is equivalent to the H function introduced in
Eqs. (6.134) and (6.136). The characteristic function tJ;(/l') differs from problem
to problem, but it has a simple algebraic form for the Rayleigh scattering
phase function. For a more general case involving the Mie scattering phase
function, however, the analytic characteristic functions tJ;(/l') have not been
derived. The iteration procedure may be utilized to solve the above nonlinear
integral equations for X and Y functions, and extensive tables of these two
functions for conservative and nonconservative isotropic scattering, as well
as anisotropic phase functions, with as many as three terms are available.

6.5 THE INCLUSION OF SURFACE REFLECTION

For planetary applications, the surface reflection plays an important role
for the reflected and transmitted sunlight. In this section, we introduce the
inclusion of surface reflection for the scattered intensity and flux density.
It is assumed that the ground reflects according to Lambert's law, with a
reflectivity (or surface albedo) of r., Under this condition the diffuse upward
intensity denoted in Eq. (6.30) is

(6.173)
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Let 1*(0; u, c/J) represent the reflected intensity including the contribution
of surface reflection, and in reference to Fig. 6.7a, we find

1 fZn f1
1*(0; u, c/J) = 1(0; u, c/J) + �~ Jo Jo Ttp; c/J; p', c/J')Isfl' du' dc/J' + Ise -!!/Il. (6.174)

The last two terms represent, respectively, the diffuse and direct transmission
of the upward isotropic intensity Is.

Equation (6.174) can be rewritten in terms of the reflection function and
the direct and diffuse transmission defined in Section 6.4.1 in the form

(6.175)

where

(6.176)

(I) (2) (3)

(a) Upward diffuse intensity

(b) Reflection of upward isotropic intensity

J W'" L
(c) Downward fl ux density Upward flux density

Fig. 6.7 Scattering configuration for the inclusion of surface reflection: (a) upward diffuse
intensity, (b) reflection of upward isotropic intensity, and (c)downward flux density and upward
flux density.
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and t(/l) is defined in Eq. (6.110). Here we note that the principle of reciprocity,
i.e., T(/l, c/J; p', 1/) = Ti p'; c/J'; u, c/J), is used to obtain the diffuse transmission
t(/l).

The upward isotropic intensity from the surface also will be reflected by
the atmosphere and will contribute to the downward intensity in the addi-
tional amount (see Fig. 6.7b)

(6.177)

where again the principle of reciprocity, R(/l, c/J; u', c/J') = Rip', c/J'; /l, c/J), is
used. Thus the total transmitted intensity, including the ground contribution,
is given by

1*('1; -/l,c/J) = 1('1; -/l,c/J) + �I�~�(�-�/�l�)

= /loF0 Tip; c/J; /lo, c/Jo) + Isr(/l). (6.178)

It now requires an equation to determine Is. Since the upward flux density
has to be equal to the downward flux multiplied by the surface albedo r"
we have

ttl; = rs x downward flux density. (6.179)

The downward flux density includes three components, as evident from Fig.
6.7c.

(1) Direct transmission component:

(2) Diffuse transmission component:

S:" SOl 1('1; - u, c/J)/l du dc/J = S:" SOl /loF0 T(/l, c/J; /lo, c/Jo)/l dp. dc/J

= n/loFot(/lo)·

(3) The component of Is reflected by the atmosphere:

S:" SOl �I�~�(�-�/�l�)�/�l�d�/�l�d�c�/�J = nIsI'·

From Eq. (6.179), we have the equality at, = '1
ttl; = rs[n/loFoe-tl/1'O + n/loFot(/lo) + nIsI']'

We then rearrange these terms to yield

(6.180)

(6.181)
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It follows from Eqs. (6.175) and (6.178) that the reflected and transmitted
intensities, including the ground reflection, are respectively,

(6.182)

(6.183)

To obtain the reflected and transmitted flux densities, we perform the
integration of the intensity over the solid angle, according to Eqs. (6.16)
and (6.17), to yield

(6.184)

(6.185)

where

(6.186)

and t and r are defined in Eqs. (6.114) and (6.115). Further, by dividing
nJ10F0 and adding e -,1I/l0 to both sides in Eq. (6.185), the preceding two
equations become

where

r*(J1o) = r(J1o) + !(J1o)Y,

Y*(J1o) = Y(J1o) + !(J1o)r,

(6.187)

(6.188)

(6.189)

In Exercise 6.10, the reader is invited to derive Eqs. (6.187) and (6.188) by
means of the ray-tracing technique.

6.6 ADDING METHOD FOR MULTIPLE SCATTERING

In essence, the adding method uses a straightforward geometrical ray-
tracing technique. If the reflection and transmission properties of two indi-
vidual layers are known, then the reflection and transmission properties of
the combined layer may be obtained by computing the successive reflections
back and forth between the two layers. When the two layers have the same
optical depth, the adding method is referred to as the doubling method. The
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adding method for radiative transfer provides traceable mathematical and
physical deductions of the reflection and transmission of light. The principle
involved establishes the foundation for a number of numerical methods. In
this section we introduce the basic procedures of the adding method devel-
oped by van de Hulst (1963).

Consider Fig. 6.8 and assume that radiation comes from the top of the
layer. Let R 1 and t , denote the reflection and total (direct plus diffuse)
transmission functions for the first layer and Rz and t , for the second layer,
and define jj and U for the combined total transmission and reflection
functions between layers I and 2. In principle, photons may undergo one
to an infinite number of scattering events. Inspection of this diagram makes
it evident that the combined reflection and transmission functions are
given by

R 1Z = R 1 + T1R zT 1 + T1RzR1R z T 1 + T1RzR1RzR1Rz T 1 + ...
= R 1 + T1R z T1[1 + R1Rz + (R1R z? + ...J
= R 1 + RzTI(l- R1Rz)-1 (6.190)

T 12 = T 1'i, + T1RzR 1r. + T1RzR1RzR1 Tz + ...
- - z= T 1Tz[l + R1Rz + (R1R z) + ... J
- - -1= T 1Tz(l - R1Rz) . (6.191)

roO

u

Fig.6.8 Configuration of the adding method. The two layers of optical depths, 1 and '2 are
for convenient illustration, as if they were physically separated.
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(6.193)

We also find the expressions for U and D in the forms

U = 7\Rz + 7\RzR 1Rz + 1\RzRIRzR1Rz + ...
= l\Rz[1 + R 1Rz + (R 1Rz? + ...J= l\Rz(l - R 1Rz)-1, (6.192)

D = 1'1 + T 1RzR 1 + T1RzRIRzRl + ...
= 1'1[1 + R1Rz + (R 1Rz)Z + ...J = T 1(l - R 1Rz)-1,

where we have replaced the infinite series by a single inverse function. On
the basis of these equations, we find

R 12 = R 1 + 1'1 U, 1'12 = TzD, U = RzD. (6.194)

But the total transmission function arises from the diffuse as well as direct
components and can be expressed by

l' = T + e-r//i', (6.195)

where J.L' = J.Lo when transmission is associated with the incident solar beam
and J.L' = J.L when transmission is related to the emergent beam in the direction
J.L. With this understanding, we now examine the parameters D and T1z
and let

S = R 1Rz(l - R 1Rz) - 1.

Thus, from Eqs. (6.193) and (6.194) we have

D = D + e-rl!/lO = (T1 + e- rl!/iO)(1 + S)

= (1 + S)T
1
+ Se-ql/iO + e-rl!/lO,

1'12 = (Tz + e- r2/1')(D + e-r,//io) = e- r21/iD

(6.196)

(6.197)

(6.199)

+ Tze-rl//lO+ TzD+exp [ �-�G�~ + �~�)�}�'�)�(�J�.�L�-�J�.�L�o�)�, (6.198)

where parameters without tilt notation C) denote the diffuse component
only. We add a delta function to the pure exponential terms to physically
represent the direct transmission for the combined layer. At this point, we
now may write a set of simultaneous equations governing the diffuse re-
flection and transmission functions for the two layers as

D = T 1 + ST 1 + Se-Tl!/iO,

U = RzD + Rze-r,//iO,

R 1Z = R 1 + e-rl!/iU + T 1U,

T 12 = e- r21/iD + Tze-rti/iO + TzD.

Note that the direct transmission function is simply e-(r, +T2)//io.
In Eqs. (6.196) and (6.199), the product of any two parameters implies that

integration over the solid angle is to be performed so as to take into account
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all the possible multiple scattering contributions. Let the operators

A1B2 = 2 SOl A('l; fl,fl')B('2; fl',flo)fl' du' (6.200)

in which A and B can be any of the parameters R, T, U, and D. In practice,
one may begin with the computations for initial layers of such small optical
depths that the single scattering approximation for Rand T given in Eqs.
(6.31) and (6.32) may be sufficiently accurate. Subsequent computations may
be carried out employing Eqs. (6.196) and (6.199) to get R 12 and T 12 . The
procedures may be repeated to evaluate the diffuse reflection and trans-
mission functions for two thicker layers having optical depths of, say,
'3 = r 1 + r2, and so on, until the desirable optical depth is reached. Numeri-
cal procedures referred to as the matrix formulation, matrix operator, or star
product method are in essence the same as the adding method, so far as the
principle and actual computations are concerned. Moreover, we shall also
show that the adding method is equivalent to the principles of invariance for
finite atmospheres introduced in Section 6.4.3.

In reference to the principles of invariance for finite atmospheres described
in Section 6.4.3, replacing, by 'Ii> and '1 by '1 + '2 (see Fig. 6.8), we have

U(fl,flo) = R(r2; fl,flo)e-rI!!'O

+ 2 SOl R(r2; fl,fl')D(fl',flo)fl' du' (6.201)

D(fl, flo) = T(r 1 ; fl, flo) = 2 SOl R(, 1 ; u, fl')U(fl', flo)fl' du', (6.202)

R(r 1 + '2; fl,llo) = R(r 1 ; fl,flo) + e- rI!IlU(fl,flo)

+ 2 SOl T(r 1 ; fl,fl')U(fl',flo)fl' du', (6.203)

T(r 1 + r 2 ; fl, flo) = T(r2; fl, flo)e-T1/!'O + e- r2/IlD(fl, flo)

(6.204)

(6.206)

where we define
Utu, flo) = 1(r 1, fl)/(floF 0),

D(fl,flo) = l(r 1 , - fl)/(floFo)· (6.205)

Upon utilizing the operators defined in Eq. (6.200), Eqs. (6.201)-(6.204) may
be rewritten in the forms

U = R2e-rIiIlO + R2D,
D = T 1 + R1U,

R 12 = R 1 + e-Tj/IlU + T 1 U,

T 12 = T 2e-
rIiI' o + e-T211lD + T 2D.
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(6.207)

(6.208)

(6.208)But (1 - R1R2 ) - 1 = 1 + R 1R2 + (R1R2 ) 2 + ... = 1 + S, so Eq.
becomes

Employing these simplified operators and recognizing the iterative relation-
ships between U and D, we find

D = T 1 + Rl(R2e-rl/llo + R 2D),

D(l - R 1R2 ) = T 1 + R1R2e-rlillO.

(6.209)

At this point, it is evident that we have derived the adding (or doubling)
equations depicted in Eqs. (6.196)-(6.199) by means of the principles of
invariance.

6.7 MULTIPLE SCATTERING INCLUDING POLARIZATION

(6.210)

We first introduce the transformation matrix associated with the Stokes
parameters (/, Q, U, V) for the rotation of the axes through an angle in the
clockwise direction. Consider two orthogonal electric components, E, and
En and rotate EI clockwise through an angle X. Let the two new orthogonal
electric components be E; and �E�~�. Referring to Fig. 6.9, we find

E; = cos XEI + sin XEn

E; = -sinXEl + COSXEr.

Let the linear transformation matrix for the electric field be

( ) = [ cosx sin x]L e X . .
-SIll X cos j

(6.211)

E'
Z

x
Fig. 6.9 Rotation of the axes.

E'r
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It follows that

221

(6.212)

Upon inserting Eq. (6.210) into the definition of the Stokes parameters for
the prime system, i.e., (I', Q', U', V'), in Eq. (3.42), we find after some straight-
forward analysis

(6.213)

where the transformation matrix for the Stokes parameters is given by

I
I 0
o cos2X

L(X) = 0 -sin2X

o 0

o
sin2x
cos2X

o
(6.214)

On the basis of Eqs. (6.213) and (6.214), we see that I and V are invariant in
the rotation process. We also find that L(Xl)L(Xz) = L(XI + Xz), and the
inverse matrix L -l(X) = L( - X).

Having the transformation matrix defined, we should now proceed to
formulate the equation of transfer in which polarization is included. In
Section 6.1, the equation of transfer for plane-parallel atmospheres was
formulated, based on the intensity quantity alone, without taking into ac-
count the effect of polarization. To represent the polarization property of the
light wave, we have introduced in Section 3.6 a set of four parameters called
Stokes parameters, defined in Eq. (3.42). To describe the radiation field at
each point in space including polarization, we replace the scalar intensity I
by the vector intensity I = (1,Q, U, V). The four Stokes parameters give,
respectively, the intensity, the degree of polarization, the plane of polariza-
tion, and the ellipticity of the light waves as functions of the incoming and
outgoing directions.

The equation of transfer given in Eq. (1.63) now may be written in the
vector form as

dICr:; u, ¢)
u dT =I(T;j1,¢)-J(T;j1,¢), (6.215)

where the source function is a vector consisting of four elements. To ob-
tain the expression for J(T; u, ¢), we consider the differential increment
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dJ(r; fl, ¢; fl', ¢') due to multiple scattering of a pencil of radiation of solid
angle dQ' in the direction (fl', ¢'). The diffuse intensity vector I(r ; u', ¢'), which
generates the source term, is in reference to the meridian plane 0 PI Z (see
Fig. 6.10). However, the scattering phase matrix derived from the scattering
theory [e.g., see Eq. (5.113)] refers to the plane of scattering 0 PIPzcontaining
the incident and scattered waves. Thus, we must first transform I(r ; fl', ¢') to
the plane of scattering in order to obtain the proper source function. In view
of the transformation concept, we may transform I(r ; fl', ¢') to the plane of
scattering by applying the transformation matrix L( - i 1 ) , where i 1 denotes
the angle between the meridian plane 0 PI Z and the plane of scattering
oPIPz, and the minus sign indicates the rotation of the plane is counter-
clockwise. Thus, we have the contribution to the source function with
reference to the plane of scattering at Pz in the form

WP(0) L( - il)I(r; u', ¢') dQ'j(4n). (6.216)

To transform it to the scattering direction (fl, ¢), i.e., the meridian plane
OPzZ, we must again apply the transformation matrix L(n - iz) through the
angle (n - iz) clockwise, where iz denotes the angle between the meridian
plane OPzZ and the plane of scattering OP1PZ ' Consequently, the desirable
differential source function due to the diffuse component is

dJ(r; u, ¢; u', ¢') = wL(n - iz)P(0)L( - idI(r; u', ¢') dQ'j(4n). (6.217)

Thus, by performing the integration over all directions (fl', ¢'), we obtain the
source function vector for multiple scattering

W fZn IIJ(r ; u, ¢; p', ¢') = 4n Jo _1 P(fl, ¢; u', ¢')I(r ; u', ¢') du' dib',

where the phase matrix

z

0'-F------cf----i---y-----

(6.218)

(6.219)

Fig. 6.10 Scattering plane OP JP 2 with respect to the meridian planes OP1Z and OPzZ.
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(6.221)

(6.220)

From the sperical trigonometry, as illustrated in Appendix F, the angles
i1 and i2 can be expressed by

. -fJ. + fJ.'cos0
cos 11 = ±(1 _ cos? 0)1/2(1 _ fJ.'2)1 /2'

. -fJ.' + fJ.cos0
cos 12 = ± (1 _ cos? 0)1/2(1 _ fJ.2)1/2'

where the plus sign is to be taken when tt < ¢ - ¢' < 2n and the minus sign
is to be taken when 0 < ¢ - ¢' < ti, From Eq. (6.7), we also find cos 0 =
fJ.fJ.' + (1 - fJ.2)1 /2(1 - fJ.'2)1 /2cos(¢ - ¢').

On following the same procedures as already outlined, the direct com-
ponent of the source function due to the point source Io( - u, ¢) = <5(fJ. - fJ.o)
<5(¢ - ¢o)nFo [see Eq. (6.106)] is

(6.222)

Thus, the equation of transfer of sunlight including polarization can be
written as

dI(,; fJ., ¢) I( "') (j) r2nfi P( '" ' "")I( , "")d ' dd:fJ. di =,; u, 'f' - 4n Jo _ 1 u, tp: fJ. , 'f' r ; fJ., 'f' fJ. 'f'

(6.223)

Comparing with Eq. (6.5), we see that the scalar intensity now is replaced
by a vector intensity consisting of four elements. Obviously, numerical
computations of the intensity fields become much more involved and com-
plicated in the case when polarization is included.

6.8 EQUATIONS FOR MULTIPLE SCATTERING
BY ORIENTED NONSPHERICAL PARTICLES

Scattering of light by a nonspherical particle depends on the directions
of the incoming and outgoing radiation, and the orientation of the particle
with respect to the incoming beam. To formulate the transfer of solar radia-
tion in a medium composed of oriented nonspherical particles, we begin
by assuming that such a medium is plane-parallel so that the variation of
the intensity is only in the Z direction. In reference to Fig. 6.11, we select
a fixed coordinate system X YZ in such a manner that the Z axis is in the
zenith direction. Also, we let X'Y'Z' represent a coordinate system referring
to the incoming light beam, which is placed on the Z' axis. Angles ¢', ¢,
y', and yare azimuthal angles corresponding to a', a, ex', and ex denoted in



224 6 Multiple Scattering in Plane-Parallel Atmospheres

Zenith

V'

(f/-"ep')}
(f/-' ep) XVZ
(a,)')

(cos ®,ep-ep')} X'V'Z'
(a', ),')

Z'

\--------- V

Z

Orientation

X
Fig.6.11 Single scattering configuration for a nonspherical particle.

the figure, and 8 is the scattering angle. The scattering parameters for a
nonspherical particle, including the phase function, and the extinction and
scattering cross sections, may be expressed with respect to either of these
two coordinate systems. Thus, we may write symbolically

(6.224a)
Pi«, y; u', 4/; fJ-,4» = Pio', i; cos 8, 4> - 4>'),

ae,s(a, Y; u', 4>') = ae,s(a', i)·

Here we note that the phase function depends on the directions of the in-
cident and scattered beams as well as the orientation of the nonspherical
particle. On the other hand, the extinction and scattering cross sections
depend only on the direction of the incident beam and the orientation of
the particle,

For a sample of nonspherical particles randomly oriented in space,
average scattering properties may be expressed in the forms

1 In: In:P(cos 8, 4> - 4>') = 2" Pio', i; cos 8, 4> - 4>') de' dy',
tt. 0 0

(6.224b)
1 (n: (n:

ae,s = n 2 Jo Jo ae,s(a', i) da' dy',

Clearly, the extinction and scattering cross sections for randomly oriented
nonspherical particles are directionally independent. Moreover, since
cos 8 can be expressed in terms of u, 4> and p', 4>' [see Eq. (6.7)J, the source
function in this case has the same form as that defined in Eq. (6.6). If all
of the nonspherical particles have rotational symmetry (e.g., circular cyl-
inders), then the scattering phase function is independent of the azimuthal
angle 4> - 4>'. Consequently, formulations for multiple scattering in randomly
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oriented, symmetrical nonspherical particles involving the intensity follow
the procedures discussed in previous sections. To include the effect of
polarization, a proper phase matrix P(0) is required. Generally, if no as-
sumptions are made concerning the physical positions of nonspherical
particles in space, the phase matrix contains 16 independent parameters
(see Exercise 5.5). However, if these particles are randomly oriented in
space and have a plane of symmetry, the 16 elements in the phase matrix
may be reduced to only six independent elements as Perrin (1942) showed.
We note that randomly oriented circular cylinders are symmetrical with
respect to the incident beam, regardless of its direction. Thus, the reference
plane of the incident beam may be used as a plane of symmetry for these
particles. Furthermore, for hexagonal cylinders, if they rotate randomly
with respect to their central axes, then their phase matrix should have the
same number of elements as that of circular cylinders.

Generally, individual-falling hexagonal crystals with shapes of cylinders
and disks tend to orient with their major axis parallel to the surface. It
is highly probable that their orientations are random in a horizontal plane.
In this case, then, o: = nj2 and we find

1 i"P(fl',<jJ'; fl,<jJ) = �~ Jo P(nj2,y; fl',<jJ'; fl,¢)dy,

a e •8(fl') = :2 I: Io" ae,s(nj2,y;fl',¢')dyd<jJ'.

(6.224c)

In Section 5.7 the importance of cirrus clouds in remote sensing and radiative
transfer was pointed out. Thus, we wish to formulate the basic equation
describing the transfer of solar radiation in cirrus cloud layers. It is apparent
that since the scattering and extinction cross sections denoted in Eq. (6.236)
depend on the direction of the incoming beam, we need to reformulate the
source function due to multiple scattering. Let the number density of a
sample of horizontally oriented hexagonal crystals be N(s) and follow the
procedures outlined in Section 6.1, we find

dI(s; u, ¢) = - N(s) ds I(s; u, ¢)ae(fl)

+ N(s) ds I:" f 1 a.{fl') P(fl, �~�~�f�l�" ¢') I(s; fl', ¢') du' d¢'

+ N(s)dsas( -flo) P(fl,<jJ; -flo,<jJo) nFo4n

(6.225)
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Upon defining the vertical path length

u = I: N(z') dz' , (6.226)

and assuming that the particle number density varies only in the Z direction,
Eq. (6.225) may be rewritten in the form

d1(u; fl,ej» = -1(' A-.) ( )fl du u, u, 'f' (J e fl

1 r2 n Ii+ 4n .lo -1 (Js(fl')P(fl,ej>; fl',<jJ')1(u; fl',ej>')dfl' dej>'

1
+ 4n (J.( - flo)P(fl, ej>; - flo,ej>o)nF0

(6.227)

(6.228)

where U i corresponds to z = co. This basic equation differs from the con-
ventional transfer equation in that the extinction and scattering cross
sections are functions of the cosine of the zenith angles, and that the scatter-
ing phase function depends on the directions of the incoming and outgoing
beams, which can be expressed in terms of the scattering angle and the
zenith angle for the incoming beam. If the single-scattering parameters
are known through single-scattering calculations, a solution of the intensity
distribution in a medium composed of randomly oriented nonspherical
particles in a horizontal plane may be obtained.

6.9 EQUATIONS FOR MULTIPLE SCATTERING
IN THREE-DIMENSIONAL SPACE

In Section 6.1 we formulated the equation for the transfer of solar radia-
tion in plane-parallel atmospheres. However, the general equation of
transfer without any coordinate system imposed is given by Eq. (1.46). Let
the extinction coefficient be fJe = k;p and omit the subscript Afor simplicity,
we write

d1
--=1-J.

fJe ds

For an inhomogeneous scattering atmosphere where the extinction pro-
perty varies in space, Eq. (6.228) can be written in the form

1 1(s,n, t) 1
--- - -fJ() (n· V)1(s,n; t) = 1(s,0; t) - J(s,n; t), (6.229)

fJe(S)C at s
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(6.230)

where c is the velocity of light, n is a unit vector specifying the direction of
scattering through a position vector s, and t is the time. Under the assumption
that the intensity is independent of time (steady state), Eq. (6.229) reduces to

1
- - (n· V)I(s,n) = l(s, n) - J(s, n).

f3e(s)

Analogous to Eq. (6.6), the general source function for solar radiation in
any coordinate systems is given by

J(s, n) = �~�~�) f41t l(s, n')p(s; n, n') dn'

+ �~�~�) P(s; n, -no)JrFoexp[ - f; f3e(S')dS} (6.231)

For simplicity of seeking a solution to the general equation of transfer,
it is normally assumed that the medium is vertically and horizontally homog-
eneous in such a manner that

f3e(s) = f3e> w(s) = w, P(s; n, Q') = P(Q, n'). (6.232)

Under this circumstance, Eqs. (6.230) and (6.231) become much simpler
so that the derivation of a solution for the integro-partial-differential equa-
tion may be mathematically feasible, subject to appropriate radiation
boundary conditions being imposed.

In Cartesian coordinates (x, y, z), the n . V operator is given by

The directional cosines in this equation are simply

Ox = :: = sin8cos¢ = (1- /12)1 /2COS¢,

Oy = as = sin8sin¢ = (I - /12)1 /2 sin ¢ ,ay
aso = - = cos 8 = /I

Z az rr»

(6.233)

(6.234)

where 8 and ¢ are the zenith and azimuth angles, respectively, in polar
coordinates used throughout this chapter, and lsi = S = (x2 + y2 + Z2)1 /2.

Thus, the fundamental equation of transfer for solar radiation in Cartesian
coordinates under the conditions of homogeneity may be expressed in the
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-;e [0- fl2)1 /2 cos 4J :X + (1- fl2)1 /2 sin4J :y + fl :z]I(X,y,Z; fl,4J)

= I(x, y, z; fl,4J) - �~ S021t f 1 I(x, y, z; p', 4J')P(fl,¢; u', ¢') dfl' d¢'

(6.235)

where x, y, and z denote distances in X, Y, and Z coordinates, respectively.
In spherical coordinates, the operator n· V may be written in the form

a a a
n .V = Qr -a + QOr -ae + Q"'r . e a-i.. 'r r r r SIn r 'l'r

(6.236)

where (r,en 4Jr) represents the coordinate system (see Fig. 6.12a), and the
directional cosines may be derived by a transformation from those in Car-
tesian coordinates. They are given by

[

Qr ] [Sin ercos ¢r sin ersin ¢r cos er][Sin ocos ¢]
QOr = cos er.cos 4Jr cosersin4Jr -siner sin Psin o ]. (6.237)

Q"'r - sm ¢r cos ¢r 0 cos e
Under the homogeneous conditions given in Eq. (6.232), the equation for
the transfer of solar radiation in spherical coordinates may be written as

z

z

(a)

z

k----i-__ y

( b)

z

8
�~�-�-�-�H�o�-�'�y

Fig. 6.12 Representations of a position vector s and a directional vector Q in (a) spherical
coordinates and (b) cylinderical coordinates.
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-;e {[(1 - 112 )1/
2 sin Or COS(rP - rPr) + 11 cos Or] :r

+ [(1 - 11 2 )1/2 COS Or COS(¢ - ¢r) - 11 sin Or] r :Or

[ 2 1/2 . (A- ] 0 } 0 .+ (1 - 11) SIll tV - rPr) . 0 o¢ I(r,,, ¢" 11, ¢)
r Sl Il r r
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(6.239)

w r27t fl= I(r, On¢r; 11, ¢) - 4n J0 _ 1 I(r, On¢r; 11, ¢ )P(Il,¢; 11', ¢') dll' d¢'

- �~ P(Il,¢; -110, ¢o)nFoexp{ -Pe[(r6 - r2 sin 0r)1 /2 - rcosOr]},

(6.238)

where ro denotes the radius of the scattering medium.
In cylindrical coordinates, the operator n . V may be written in the form

a a 0
n'V=Dr or +D</>rrO¢r +Dz oz'

where (r, ¢" z) represents the coordinate system (see Fig. 6.12b), and again
the directional cosines may be derived by an appropriate transformation
from those in Cartesian coordinates in the form

[

Dr ] [COS ¢r sin ¢r O][Sin 0 cos ¢]
D</>r = -sin¢r cce o, 0 sinOsin¢ .
n, 0 0 1 cosO

(6.240)

where r0 is the radius of the cylindrical medium.

Subject to the homogeneous conditions specified in Eq. (6.232), the equation
for the transfer of solar radiation in cylindrical coordinates is as

�-�~ [(1 - 112 ) 1/ 2 cos(¢ - ¢r) �~ + (1 - 112 ) 1/ 2 sin(¢ - ¢r) _o_
Pe or rO¢r

+ 11 :z]I(r,¢n Z ; Il,¢) = I(r,¢"z; Il,¢)

- �~ S027t f 1 I(r, ¢r, Z; 11, ¢ )P(Il,¢; 11', ¢') dll' d¢'

- �~ P(Il,¢; -110' ¢o)nFoexp {-Pe[r6 - r2sin2¢r)1 /2 - r cos e.j},

(6.241)
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Equations (6.235), (6.238), and (6.241) are the basic equations describing
the transfer of solar radiation in coordinate systems which may be applicable
to clouds of finite dimensions. From satellite cloud pictures as well as our
day-to-day experiences, we see that portions of clouds and cloud systems
that cover the earth are either finite in extent or in forms of cloud bands. To
what degree that the finiteness of clouds influences their reflection, trans-
mission, and absorption properties is a question requiring further investi-
gations. Also, the question concerning the effects of finite cumulus clouds
on the heating and cooling in tropical atmospheres needs to be answered
quantitatively. Perhaps, the basic equations given in this section may be of
some use for an attempt to derive simplified solutions which may provide
realistic flux distributions in cumulus cloudy atmospheres.

EXERCISES

6.1 Neglecting the ground reflection effect, compute and plot the reflected
intensity (reflection) at the top of nonabsorbing molecular atmospheres
whose optical depths are assumed to be 0.1 and 1 for 110 = 0.8, using the
single-scattering approximation. Compare the resulting calculations with
those presented by Coulson et al. (1960, pp. 21 and 57), in whose work the
the multiple-scattering effect was properly taken into account.

6.2 Derive an analytical expression for the diffuse reflection at the top of
the atmosphere, utilizing the second-order scattering approximation (neglect
the surface reflection). Carry out the analyses for Jl =F Jl' and Jl = u',

6.3 Derive the two-stream solution for conservative scattering and
calculate the reflection and transmission, assuming an asymmetry factor of
0.75 for optical depths of 0.25, 1,4, and 16. Plot the results as functions of the
cosine of the solar zenith angle Jlo and compare with those computed from
16 discrete streams and the doubling method shown in Table 6.2.

6.4 Insert the expression 11 in Eq. (6.60) into Eq. (6.59) to obtain

d2 [
__0 = k 2 [ _ ne-'/I'O
di? 0', ,

where k = [3(1 - w)(1 - wg)]1/2, representing the eigenvalue, and 11 is a
certain constant associated with F0, W, and g. This equation is referred to as
the one-dimensional diffussion equation. Solve for [0 in this equation and,
subsequently, [1 using the radiation boundary condition defined in Eq. (6.30).

6.5 Consider Eq. (6.15) and let
N

[(r,ll) = L [/(r)P/(Jl),
/=0
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where P/(Il) denotes the Legendre polynomial. By utilizing the orthogonality
property of the Legendre polynomials and the recurrence formula

show that Eq. (6.15)can be reduced to a set of first-order differential equations
as

k = 0,1, ... , N.

These simultaneous equations may be solved by properly setting up the
boundary conditions. It is referred to as the spherical harmonics method for
radiative transfer. We see that for the simple case of k = 0, 1, the preceding
equation leads to Eqs. (6.59) and (6.60), respectively.

6.6 Formulate the transfer of infrared radiation in a scattering atmosphere
having an isothermal temperature T in local thermodynamic equilibrium,
assuming the intensity is azimuthally independent. By means of the discrete-
ordinates method for radiative transfer, assuming isotropic scattering, show
that the scattered intensity is given by

where the La are unknown constants of proportionality, III are the discrete
streams, ka the eigenvalues, and B; represents the Planck function.

6.7 A satellite radiometer measures the reflected solar radiation from a
semi-infinite, isotropic-scattering atmosphere composed of particulates and
gases near the vicinity of an absorption line whose line shape is given by the
Lorentz profile and whose absorption coefficient can be written as

Assuming that the particulates are nonabsorbing and that the scattering
optical depth is equal to the gaseous absorption optical depth at the line
center, calculate the reflected intensity (reflection function) as a function of
wave number v using the two-stream approximation. Do the problem by
formulating (1) the single-scattering albedo as a function of v, and (2) the
reflected intensity in terms of the two-stream approximation.
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6.8 For a semi-infinite, isotropic-scattering atmosphere, show that the
planetary albedo

and the spherical albedo

r = 1 - 2.J 1 - OJ fol
H(/lo)/lo du.:

Use the first approximation for the H function and assume single-scattering
albedos of 0.4 and 0.8; compute the planetary albedo for flo of 1 and 0.5 and
the spherical albedo.

6.9 An optically thin layer ,1, is added to a finite atmosphere with an
optical depth of '1 and all the possible transmissions of the incident beam
due to the addition of the thin layer are depicted below. Formulate Eq. (6.159)
using the principles of invariance discussed in Section 6.4.2. The method is
also referred to as invariant imbedding. (Note that dotted lines represent
direct transmission.)

Il-o Il-o Il-o Il-o Il-o

6.10 Consider a cloud layer having a total global transmission of]! and a
global reflection (spherical albedo) of r above a Lambert surface with a
surface albedo of f s . Assuming no atmosphere between the cloud and surface,
derive Eqs. (6.187)-(6.189) by means of geometrical ray-tracing for multiple
reflections between the cloud and surface.
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Chapter 7
APPLICATIONS OF RADIATIVE
TRANSFER TO REMOTE SENSING
OF THE ATMOSPHERE

7.1 INTRODUCTION

Electromagnetic waves interacting with a medium will leave a signature
which may be used to identify the composition and structure of that medium.
Remote sensing is contrary to in-situ measurements whereby specific obser-
vations are made within the medium. The basic principle associated with
remote sensing involves the interpretation of radiometric measurements of
electromagnetic radiation characterized by a specific spectral interval which
is sensitive to some physical aspect of the medium. The physical principle of
remote sensing is illustrated by the simple configuration in Fig. 7.1. Basically,
an electromagnetic signal is recorded by a detector after it interacts with a
target containing molecules and/or particulates. If T and S denote the target
and signal, respectively, then we may write symbolically

S = F(T),

where F represents a function, not necessarily linear. The inverse of the above
relation gives

T = F- 1(S),

where F- 1 represents the inverse function of F.
The fundamental obstacle in all the inverse problems of remote sensing is

the uniqueness of the solution. The nonuniqueness arises because the medium
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I
S=F(T)

I
Target Signal

I T=F-1(S) 1
Fig. 7.1 Principle of remote sensing.
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under investigation may be composed of a number of unknown parameters
whose various physical combinations may lead to the same radiation signa-
ture. In addition to this physical problem, there are also mathematical
problems associated with the existence and stability of the solution, and the
manner in which the solution is constructed. There are two distinct principles
involved in remote sensing leading to two classifications. These are the so-
called active and passive remote sensing.

Active remote sensing employs a radiation source generated by artificial
means such as lasers used in lidar or microwaves used in radar. The radiant
energy source corresponding to a specific wavelength is sent to the atmo-
sphere. Some of the energy is scattered back to the detector and recorded.
From the recorded scattered energy, one analyzes the composition and
structure of the atmosphere with which the radiant energy has interacted.
Active remote sensing is normally concerned with the backscattering; i.e.,
the transmitter and detector are co-located.

Passive remote sensing utilizes the natural radiation sources of the sun or
the earth-atmosphere system. For example, spectral solar radiation interacts
with the cloud and leaves a scattered signature which may be used for its
identification. Similarly, spectral thermal infrared or microwave radiation
emitted from the earth-atmosphere system may be utilized to understand its
thermodynamic state and composition. In reference to Fig. 1.1 regarding the
electromagnetic spectrum, all wavelengths are possible from the emitting
material. However, for atmospheric applications, the solar, infrared, and
microwave spectra are most important.

The passive remote sensing principle leads to development of the global
inference of atmospheric temperature, composition profiles, and radiative
budget components from orbiting meterorological satellites. The first mete-
orological satellite experiment was an array of hemispheric sensors flown on
the Explorer VII satellite launched in 1959 to measure the radiation balance
of the earth-atmosphere system. Shortly after, a five-channel scanning radi-
ometer was carried on board Tiros II. On the basis of the scanning radiometer,
the general characteristics of sounding instrumentation were established for
reserch and operational satellites during the last two decades. In April 1969,
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two spectrometers providing spatial infrared measurements for the deter-
mination of the vertical profiles of temperature, water vapor, and ozone were
flown on the Nimbus III satellite. Also on board was another instrument for
measurement of the reflected UV radiation which allowed the determination
of the global ozone concentration. The launch of Nimbus 5 in December
1972, marked the first application of microwave techniques for the remote
sensing of the atmospheric temperature and total water. These are the mile-
stones of atmospheric sounding from orbiting meteorological satellites.

In this chapter, we first discuss the information content of the scattered
solar radiation. Following a detailed description of the principle of tempera-
ture and gaseous profile determination from thermal infrared emission, the
use of the microwave emission for atmospheric studies is introduced. These
sections emphasize the remote-sensing principle for the inference of atmo-
spheric temperature and composition from satellites. Radiation budget
studies from satellites associated with radiation climatology is discussed in
Chapter 8. The principle of active remote sensing utilizing the backscattered
energy is then presented with emphasis on the propagation of laser energy
in the atmosphere.

7.2 SCATTERED SUNLIGHT AS MEANS OF REMOTE SENSING

7.2.1 Transmitted Sunlight

7.2.1.1 Total Ozone Determination A classic example of utilizing the
measured transmitted solar flux density as a means of inferring the composi-
tion information is the method proposed by Dobson in 1931 for the estimate
of total ozone concentration from a ground-based instrument. Basically, this
method uses the Beer-Bouguer-Lambert law (see Section 1.4.2) to describe
the transfer ofUV sunlight and neglects the effect of multiple scattering. Thus,
the differential change of the incoming flux density F centered at wavelength
Jc at a given z in an atmosphere containing ozone, air molecules, and aerosols
may be expressed by

dF;.(z) = - FJz) dz sec eo[k(Je)P3(Z) + �u�~�(�}�,�)�N�(�z�) + uZ'(},)Na(z)J, (7.1)

where eo denotes the solar zenith angle, k the ozone mass absorption co-
efficient (g-l em"), P3 the ozone density, �u�~ the Rayleigh scattering cross-
section (ern", see Section 3.7.2), N the number of molecules (cm ":'], uZ' the
Mie extinction (absorption plus scattering) cross section due to aerosols (see
Section 5.4), and N; the number of aerosols, all at height z.

To simplify Eq. (7.1), we make use of the optical depth parameter, rR
,

defined in Eq. (3.73) for Rayleigh molecules and r M for Mie aerosols, and
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define the total ozone concentration in the vertical column III the form
(g cm- 2 )

(7.2)

(7.4)

In addition, since ozone has a maximum concentration at about 22 km, we
let the solar zenith angle in reference to this height account for the ozone
slant path, and let eo = Z. Also for Rayleigh molecules, we use the air mass
m = sec eo to denote the slant path of air (see Section 2.4.1). In view of these
simplifications and definitions, the solution of Eq. (7.1) may be written as

In [F;JO)/F.«oo)] = -k(A)QsecZ - rR(A)m - rM(),)m, (7.3)

where F.« (0) and F.«O) represent the incoming solar flux densities at the top
and bottom of the atmosphere, respectively.

Having formulated the solar flux density attenuation, we then select a pair
of wavelengths (JobA2 ) in the Hartley-Huggins ozone absorption band
described in Section 3.2. Assuming that the aerosol optical depths at A) and
)'2 are about the same, then upon subtracting the equation for )'2 from that
for A), and solving for Q we obtain

Q = In[F.u(oo)/Fdoo)] - In[F.u(O)/F.dO)] - m[rR(J.)) - rR(A2)]
sec Z[k(A1) - k(}'2)]

In this equation, [rR
( } . ) ) - rR(A2) ] is computed from Rayleigh scattering

theory, [k()'l) - k(}'2)] is determined from laboratory measurements, and
[F.u(oo)/F.doo)] can be obtained once and for all by means of the long
method introduced in Section 2.4, by making a series of measurements over
a range of zenith angles, and then by extrapolating. The zenith angles eo and
Z are functions of the latitude, time of year, and time of day, as discussed in
Section 2.5. Thus, determination of In[FJ.1(O)/FdO)] from the ground flux
density measurements yields a total ozone value. The standard instrument
for measuring the total ozone concentration is called the Dobson spectrometer
(Dobson, 1957), which is in operational use at 80 ground stations around the
world.

7.2.1.2 Turbidity and Precipitable Water Determination The atmosphere
constantly contains suspended particles ranging in size from about 10- 3 )lm

to about 20 )lm, called aerosols or referred to as pollution. These aerosols
are known to be produced directly by man's activities, by natural processes
having no connection with man's activities, and by natural processes which
may have been intensified by man. Natural aerosols include volcanic dust
occurring in the stratosphere, sea spray and its particulate products, wind-
generated dust, smoke from natural forest fires, and small particles produced
by chemical reactions of natural gases. Major man-made aerosols include
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particles directly emitted during combustion and particles formed from gases
emitted during combustion.

Aerosols not only scatter, but also significantly absorb the incoming solar
radiation covering the entire spectrum. Since aerosols are globally dis-
tributed, their effects on the heat balance of the earth-atmosphere system
can be very significant. In recent years, there has been growing speculation
and increasing concern that aerosols in general and man-made pollution in
particular might be an important factor causing the worldwide disturbances
of weather and climate. As a result of this concern, observations of the
concentrations and physical and chemical characteristics of aerosols in the
atmosphere as functions of time and space, and studies of their optical prop-
erties in the solar spectrum continuously have been carried out with con-
siderable effort.

Observational methods to determine the dust loading of the atmosphere
were developed during the 1920s by Linke and Angstrom. In essence, the
aerosol total optical depth, sometimes referred to as turbidity, is derived from
spectrally dependent direct flux density observations on the ground. Wave-
lengths in the visible normally are employed where there is practically no
water vapor absorption, and ozone absorption is at a minimum. The simple
Beer-Bouguer-Lambert law is again used, and from Eq. (7.3) we obtain

(7.5)

where again m (= sec eo) is the air mass relative to the vertical direction, and
F ..(0) is the observed direct solar flux density at wavelength },. As before,
F A( co] can be determined once and for all from the long method mentioned
previously. Thus, by subtracting the Rayleigh optical depth, which can be
theoretically computed, the aerosol optical depth may be inferred. Correction
of the small ozone absorption also may be carried out by including an addi-
tional ozone optical depth term in Eq. (7.5), which also may be theoretically
estimated.

The total aerosol optical depth due to extinction may be written as

rM(A) = r fJe(A, z)dz. (7.6)

Assuming that the aerosol size distribution is described by dn(a)/da(cm -4),
where dn(a) expresses the number of particles with radii between a and
a + da, the extinction coefficient (cm- 1

) is then given by Eq. (5.115) in the
form

ia 2 dn(a)
fJe(}"z) = <Te(a,A) -d-da,

a, a
(7.7)

where o; represents the extinction cross section (crrr') for an individual
particle. The size distribution of aerosols in the atmosphere has been a subject
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(7.8)

of extensive research in the last two decades or so. To a good approximation,
it may be described by the so-called Junge distribution in the form

dn(a) = C() - (v*+ 1)
da z a ,

where C is a scaling factor directly proportional to the aerosol concentration,
and therefore is a function of height z in the atmosphere, and v* represents
a shaping constant which normally is found to lie in the range 2 �~ v* < 4.
The distribution is typically assumed to apply for sizes ranging from about
a1 = 0.01 flm to about a2 = 10 flm.

Using the Junge size distribution, it can be shown that the aerosol optical
depth is simply

(7.9)

where k is a certain constant (see Exercise 7.1). When v* = 3.3, k is known
as the Angstrom turbidity coefficient. Clearly, if the turbidity has been mea-
sured at two wavelengths, the shaping constant may be determined, since k
is a constant.

The determination of the total vertical water vapor amount using direct
transmitted solar radiation observation was pioneered by Fowle in 1917.
Recently, Volz (1974) proposed a multispectral instrument called a sunphoto-
meter for measurements of precipitable water. Basically, a pair of wavelengths
in the near infrared is selected. One wavelength is in the window of water
vapor (Al = 0.88 flm), while the other is in the pen band of water vapor
(A2 = 0.94 flm). It is assumed that the extinction by aerosols and molecules
at these two wavelengths is about the same. Moreover, the square root
approximation for the random model (see Exercise 4.5) is utilized for the
spectral water vapor transmissivity.

Thus, in analogy to Eq. (7.5) the transmissivities for A1 and A2 are, respec-
tively,

F.u(O)/F.u(oo) = exp{ - [rM()'l) + TR(}'l)]m}, (7.10)

FdO)/Fdoo) = exp{ - [T
M(A2) + TR()'2)]m - KjUm}, (7.11)

where K = -JnSorx/b, So the mean line intensity, rx the mean line half width,
and b the mean line spacing. The path length (or equivalently the precipitable
water) is represented by u in units of g em - 2 (or em atm.). Dividing Eq. (7.11)
by Eq. (7.10), and rearranging the terms, we find

(7.12)

where qo = Fn(O)/F),l(O), q = Fdoo)/F.u(oo). The constant K is to be de-
rived by comparison with sounding data, and again qo may be obtained by
the long method previously mentioned.
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7.2.2 Reflected Sunlight

7 Applications of Radiative Transfer

7.2.2.1 Total Ozone Estimate from Reflected Intensity The basic princi-
ple involved in the estimate of ozone concentration utilizing the reflected
sunlight is to select a pair of wavelengths in the Hartley-Huggins ozone
absorption band. The principle for the selection of a pair of wavelengths is
the same as for the Dobson ozone spectrometer described previously. Wave-
lengths near the long-wavelength end of the band at which absorption is
relatively weak are chosen so that most of the photons reaching the satellite
instrument have passed through the ozone layer and backscattered from
within the troposphere. Absorption for one of these wavelengths is stronger
than for the other. The two wavelengths are separated by about 200 A so
that the scattering effect is about the same at each wavelength, whereas the
relative attenuation for the pair is sensitive mostly to total ozone. A pair such
as (3125,3312 A), for example, has been employed in the Nimbus IV satellite
experiment.

The backscattering radiance in the ozone band at the point of satellite with
a nadir-looking instrument depends on the attenuation of the direct solar
flux through the ozone layer, the reflecting power of the atmosphere and the
associated surface, and the attenuation of the diffusely reflected photons to
the point of satellite. IfZ denotes the solar zenith angle at the level of maxi-
mum ozone concentration (about 22 km) at the subsatellite point, then the
total attenuation path of the backscattered photons through the ozone layer
is proportional to 1 + sec Z. Let F0 and I be the incident solar irradiance and
backscattered radiance at the top of the atmosphere, respectively. We define

(7.13)

The inference of total ozone concentration is made by comparing the ob-
served N with values precomputed for a series of different standard ozone
profiles through the interpolation method.

The computational method for the transfer of solar radiation in a scattering
and absorbing atmosphere usually has been developed for the atmosphere
alone without considering the surface reflection effect. Assuming that the
reflecting surface follows Lambert's law, then according to Eq. (6.182), the
backscattered radiance at the top of the atmosphere including the surface
reflection contribution may be expressed by

(7.14)

where T(Q, flo) = floFoy(l)Y(flo), flo = cos Z, and Q denotes the total ozone
concentration. In this equation, all the relevant parameters in the radiative
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terms are included in the parentheses. Note that SInce the instrument is
looking at the nadir direction, the azimuthal dependence may be neglected.

Figure 7.2 illustrates the computed values of N as a function of the slant
path s = 1 + 1/flo for a pair wavelength of(3125, 3300 A). The computations
are based on the method of successive orders of scattering (Dave and Mateer,
1967). Surface albedos of 0.0 and 0.8 are used and atmospheric pressure,
which is related to Rayleigh scattering, is set to be 1000 mb. For a given
albedo, it is seen that values of N/S reduce as ozone concentration increases.
Uncertainty in the albedo value would introduce extreme difficulty in the
interpretation of the results. Consequently, from the satellite sounding point
of view, it is imperative that information of the surface albedo first be deter-
mined.
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Fig.7.2 Computed relationship between N/S and S for the various ozone distributions for
(A1J 2 ) = (3124, 3300 A), P = 1000 mb, r, = 0.0 (solid curves), and r, = 0.8 (dashed curves)
(after Dave and Mateer, 1967).

The three basic procedures for the estimate of total ozone concentration
from observed N are: (1) A set of tables containing the computed quantities
1(0., flo, 0), T(o., flo), and r(o.) for different values of flo and 0. are prepared.
(2) The effective surface albedo is determined by utilizing the photometer
measurement at a wavelength outside the ozone absorption band, say )'3



242 7 Applications of Radiative Transfer

(7.15)

(3800 A), for example. Thus, the ozone dependence drops out of all the terms
in Eq. (7.14), and a measurement of 13(/1 0' rs) permits the direct calculation
of the surface albedo with the formula

rsV3) = �1�3�~�0�:�.�r�S�) - 13(/1 0, 0)
T(/1o) - r[I 3(/10,r,) - 13(/10,0)]

The assumption is made that rs is independent of wavelength so that it can
be used for the pair wavelengths (A 1' )' 2)' Empirical adjustment may also be
performed to correct rs()'3) to the pair wavelengths. (3) With the surface
albedo known, computations are then carried out to generate N()'j, )'2)

versus total ozone concentration Q. Best estimates of n from N(A j , A2 ) ,

computed from observed radiances, may be made by an optimized search
method.

The matching and search method has been used by Mateer et al. (1971) to
estimate total ozone concentration from the Nimbus IV satellite measure-
ments of backscattered radiances at wavelengths between 3100 and 3400 A
by means of a double monochromator, and at 3800 A. Recently, Dave (1978)
discussed the effect of atmospheric aerosols on the estimate of total ozone
concentration. Influence of aerosols and clouds still appears to be the major
problem in the ozone sounding study.

7.2.2.2 Cloud Properties Inferred from Reflected Polarization Clouds
regularly cover about 50% of the planet Earth and are the most important
regulators of the radiation budget of the earth-atmosphere. The transfer of
radiation through cloud layers depends on the particle phase, concentration,
size distribution, and the cloud thickness and shape. Information about cloud
compositions and structure is of vital importance to the understanding of
the radiation balance and energetics of the earth-atmosphere system.

Because of the number of variables embodied and the associated problem
of multiple scattering by particles, the determination of changing cloud
variables from remote sensing is very difficult. In recent years, owing to the
availability of high-speed digital computers, the solution of the radiative
transfer problem has been so developed that potential of estimating cloud
compositions by means of reflected sunlight has been illustrated. Analogous
to the total ozone concentration inference, the method involved is a direct
ad hoc matching between the observed and computed intensity and/or
polarization. In this section, we describe the information content of the
reflected polarization of sunlight from clouds composed of particles.

In Section 5.6, some single-scattering characteristics of polydispersed
spherical particles were presented and discussed; specifically, Fig. 5.11 depicts
the scattering phase function and linear polarization patterns. We note that
the scattering phase function is directly proportional to the scattered intensity
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if only single scattering is considered [see Eq. (6.31)]. Moreover, as noted in
that section, the single scattered intensity and linear polarization are char-
acterized by the strong forward peak along with rainbow and glory features.
For clouds, which are normally optically thick, would the multiple scattered
intensity and polarization preserve these notable features?

Shown in Fig. 7.3 are the reflected intensity and degree of linear polariza-
tion defined in Eq. (3.75a) for a plane-parallel cloud whose optical depth
varies from 0.25 to 120 (essentially semi-infinite) at a wavelength of 1.2 flm
when the sun is overhead. The computations (Hansen, 1971) were based on
the adding method discussed in Section 6.5 in which the azimuthal depen-
dence and four Stokes parameters associated with polarization were taken
fully into account. The spherical particle size distribution used in the calcu-
lations has the form

n(a) = const a(1-3/3}//3e- af(a/3}, (7.16)

where rJ. ( = 6 flm) represents the mean effective radius, and f3 ( �=�~�) is the
effective dispersion of this size distribution. The abscissa in this diagram is
such that 0° zenith angle corresponds to a 1800 scattering angle.

In regard to the intensity pattern, the single-scattering features shown in
Fig. 5.11 in the angular distribution of the scattering light are practically

Fig.7.3 Intensity and percent linear polarization of sunlight reflected by a plane-parallel cloud
with the sun overhead (80 = 0°) as a function of the zenith angle. The wavelength is 1.2 usn, and
results are shown for several optical thicknesses (after Hansen, 1971).
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lost. The rainbow and glory features disappear completely and quickly as the
optical depth increases. We note that as p -> 0 (8 -> 90°), intensity decreases
because of the multiple scattering effect. The decrease is referred to as limb
darkening. The linear polarization pattern in a linear scale, however, retains
the major feature, even though the polarization is largely reduced with
increasing optical thickness. It should be noted that since polarization is
derived from the ratio of the intensities, accuracies to within a few tenths of a
percent can be obtained from observed data.

In view of the foregoing findings, it seems that the intensity measurement
may yield cloud optical depth information, while polarization gives an addi-
tional dimension on the particle phase and size characteristics. The latter
conclusion is based on the fact that nonspherical particles do not generate
rainbow and glory as demonstrated in Section 5.7, and that the magnitude
of polarization depends significantly on the sizes of particles as shown in
Fig. 5.11.

The problem encountered in the direct-fitting approach is that there are
several unknown parameters which are interrelated so far as the optical
properties of particles are concerned. The value of each parameter must be
varied in order to yield the best fit ofthe computed results with the observed
values. Besides the problem of mathematical and physical uniqueness of the
resulting computation, there is no clear-cut answer as to which values for
these variables may fit the observed data best. Thus, the determination of the
unknown cloud parameters would depend on intuition and ad hoc fitting
and interpretation. As a result, mapping of particle characteristics over both
extended space and time scales appears to be difficult.

Perhaps the most intriguing results in connection with the use of polar-
ization data for the determination of particle sizes and optical characteristics
have been found in the study of the cloud deck of Venus. Venus is the nearest,
yet the most mysterious planet, as it is surrounded by a veil of clouds. Polar-
ization observations of Venus date back to 1929 by the French astronomer
Lyot using visible light. In recent years, more extensive observations have
been made for wavelengths in the near infrared. Meanwhile, the advanced
development of multiple scattering programs, also in recent years, has
prompted the quantitative interpretation and analysis of the observed polar-
ization data.

Hansen and Arking (1971) used the adding method for multiple scattering,
and calculated the reflected polarization of sunlight from the Venus disk.
Comparisons with observations revealed that the cloud particles on Venus
are spherical with a refractive index of about 1.45 and a mean particle radius
about 1 pm. Kattawar et al. (1971) made multiple scattering calculations for
spherical particles employing the Monte Carlo method for a spherical atmo-
sphere and derived a refractive index 1.45 < m, < 1.60. More recently,
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Hansen and Hovenier (1974) reported an extensive investigation of the par-
ticle shape, size, and refractive index of the Venus cloud deck by comparing
the observed linear polarization with comprehensive multiple scattering
computations including Mie particles and Rayleigh molecules. They con-
cluded that the Venus cloud layer was composed of spherical particles having
a mean radius of about 1.05 ,urn and an effective dispersion of 0.07. The
refractive index of the particles is about 1.44 at a wavelength of 0.55 ,urn with
a normal dispersion.

Shown in Fig. 7.4 are observations and theoretical computations of the
linear polarization of visible sunlight reflected by Venus. After varying a. and
f3 and m., the best fit to the observed data is given by the heavy curve. The
maximum at the phase angle about 200 (scattering angle 160°) is the primary
rainbow, the product of light rays undergoing one internal reflection, which
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Fig.7.4 Observations (0, X, +,1'1) of the polarization of sunlight reflected by Venus as a
function of the phase angle (180° - 0) in the visual wavelength region and theoretical compu-
tations for A = 0.55 jim (after Hansen and Hovenier, 1974).
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nonspherical particles do not show as illustrated in Section 5.7.Consequently,
the obvious conclusion is that the particles have to be largely spherical in
order for the rainbow feature to be produced. Also, note that the maximum
at about 1550 is the feature of anomalous diffraction. This figure serves as a
good illustration of the information content in the polarization data.

In view of this significant finding, photometric interpretations also may be
carried out to understand the physical, optical, and chemical properties of the
clouds and/or hazes that cover other planets. Recent Mariner spacecraft
studies of Mars reveal that clouds of H 2 0 ice as well as possible CO 2 ice
haze are sometimes present in the Martian atmosphere. Moreover, under-
standing of the likelihood of NH 3 clouds in the Jovian atmosphere and the
nature of Saturn's rings would require further studies. Photometric and
scattering techniques undoubtedly will provide significant data for the under-
standing of the physical and chemical composition of the clouds and/or
haze on these planets. However, particles that occur in Mars, Jupiter, and
Saturn are likely to be nonspherical. Owing to the nonsphericity and the
associated orientation problem, reliable single scattering information has
not been presented in a form suitable for multiple scattering investigations.
Also, transfer of radiation through oriented nonspherical particles has not
been theoretically formulated and understood, and it is an area that definitely
requires further theoretical as well as observational studies.

7.3 INFRARED SENSING FROM SATELLITES

7.3.1 Upwelling Radiance at the Top of the Atmosphere

Assume that the satellite instrument observes in a narrow cone in the
local vertical so that everywhere within the cone the cosine of the emergent
angle J1 �~ 1, which is customarily called upwelling direction. From Eq. (4.3),
the monochromatic upwelling radiance in a clear atmosphere is given by

Iv(r) = Iv(rl)e-(r,-r) + 1" Bv[T(r)]e-(r'-r) di'. (7.17)

But

We have then

(7.18)

The normal optical depth is defined by

r = Loo kv(z')p(z') dz', (7.20)
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(7.21)

where k; is the absorption coefficient (em2 g- 1), and p the density of the
absorbing gases. Furthermore, the monochromatic transmission function
(or transmittance) discussed in Section 4.4 may be expressed by

3 v(z) = e- r = exp[ - 1'J kV(ZI)P(ZI)dzJ

where the transmission function is expressed in reference to the top of the
atmosphere. At the top of the atmosphere z ....... 00 and T ....... O. Also, when
z = 0, T = T l' Thus, the upwelling radiance at the top of the atmosphere in
z coordinate may be written in the form

(7.22)

where 03v(z)/oz is called the weighting function which, when multiplied by
the Planck function, yields the upwelling radiance contribution from a given
height z. I v(O) represents the upwelling radiance at the surface and is given
by 8 vBv(TJ, where T; is the surface temperature, and s, the monochromatic
emissivity of the surface. For all practical purposes, the emissivity s, from
the earth's surface can be taken as unity in the infrared region.

Sometimes it is convenient to express Eq. (7.22) in pressure coordinates.
Based on the hydrostatic equation and the definition of mixing ratio q = p]Pa,
where P and Pa are the density of gas and air, respectively, we have

P dz = - (q/g) dp.

Thus, the monochromatic transmittance in pressure coordinate is

3Jp) = exp[-t f: kJPI)q(PI)dPJ

and the upwelling radiance may be expressed by

10 o3v(p)
IJO) = BJTJ3v(Ps) + Bv[T(p)] -0:\- dp,

Ps up

(7.23)

(7.24)

(7.25)

where P« is the surface pressure.
Equation (7.25) expresses the upwelling radiance at a monochromatic

wave number. However, an instrument can distinguish only a finite band
width tjy(v, v), where tjy and v denote the instrumental response (or slit) func-
tion and the mean wave number of the band width, respectively. The mea-
sured radiance from a spectrometer over a wave number interval (VI' V2) in
the normalized form is then given by

fV
2 Ifv21,,(0) = tjy(v, v)Iv(O) dv tjy(v, v)dv.

Vi Vi
(7.26)
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Upon carrying out the wave number integration of Eq. (7.26), we obtain

(7.27)

If the spectral interval (Vb V 2) is small enough that the variation of BJT)
with respect to v is insignificant so that its value may be replaced by B,;(T)
to a good approximation, then Eq. (7.27) becomes

_ or 1° [ a.'T,,(p)11'(0) - Bv(Ts).'Y 1'(pJ + B; T(p)] -",- dp,
p, up

(7.28)

where the spectral transmittance when the instrumental response function
is taken into account is defined by

i
V2 liv2:Yv(p) = ¢(v, v):Yv(p)dv ¢(v, v)dv,

VI VI

(7.29)

and the spectral weighting function is given by

a.o:v(p) = I V2 ¢(v, v) a.o:v(p) dvl I V 2 ¢(v, v)dv. (7.30)
up JVI up JVI

Note that if ¢(v, v) = 1, Eq. (7.29) reduces to Eq. (4.16).
The fundamental principle of atmospheric sounding from orbiting meteo-

rological satellites utilizing the thermal infrared emission is based on the
solution of the radiative transfer equation described by Eq. (7.28). In this
equation, the upwelling radiance arises from the product of the Planck
function, the spectral transmittance, and the weighting function. The Planck
function consists of temperature information, while the transmittance is
associated with the absorption coefficient and density profile of the relevant
absorbing gases. Obviously, the observed radiance contains the temperature
and gaseous profiles of the atmosphere, and therefore, the information con-
tent of the observed radiance from satellites must be physically related to the
temperature field and absorbing gaseous concentration.

Perhaps at this point, it is appropriate to examine the characteristics of the
infrared spectrum at the top of the atmosphere illustrated in Fig. 4.1. There
are four regions over which water vapor, ozone, and carbon dioxide exhibit
a significant absorption spectrum. Carbon dioxide absorbs infrared radiation
in the 15 ,urn band from about 600 to 800 em -1. Not shown in that figure
is another carbon dioxide band in the 4.3 ,urn region. Absorption due to
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ozone is largely confined in the 9.6,um band. Water vapor exhibits absorption
lines over essentially the entire infrared spectrum, but the most significant
absorption lies in the vibrational-rotational band at 6.7 !lm, and in the pure
rotational band (< 500 em - 1). From about 800 to 1200 em - 1 (atmospheric
window), absorption of atmospheric gases shows a minimum (except the
9.6 !lm ozone band), and therefore, the atmosphere is relatively transparent
in this region. It should be noted that overlapping of CO 2 , 03, and H 20

absorption is relatively insignificant.
Returning to Eq. (7.28), it is clear that if observations are taken in the

window region, the upwelling radiance may be approximated by

(7.31)

where !Xl and !X2 are small correction terms, which, if empirically determined,
will give an estimate of the surface temperature from the observed radiance.

The mixing ratio of CO 2 is fairly uniform as a function of time and space
in the atmosphere. Moreover, the detailed absorption characteristics of CO 2

in the infrared region are well understood, and its absorption parameters,
i.e., half width, line strength, and line position, are known rather accurately.
Consequently, the spectral transmittance and weighting functions for a given
level may be calculated once the spectral interval and the instrumental
response function have been given. To see the atmospheric temperature
profile information we rewrite Eq. (7.28) in the form

Iv - Bv(TJYips) = ro Bv[T(p)] af1av(p) dp.
Jps p (7.32)

(7.33)

It is apparent that measurements of the upwelling radiance in the CO 2

absorption band contain the information of temperature values in the interval
(Pso 0), once the surface temperature has been determined. However, the
information content of the temperature is under the integral operator which
leads to an ill-conditioned mathematical problem. In the next section, we
discuss in detail this problem and a number of methods for the recovery of the
temperature profile from a set of radiance observations in the CO 2 band.

Finally, to understand the information content of gaseous profile from the
solution of the radiative transfer equation, we perform integration by parts
on the integral term in Eq. (7.32) to yield

_1° ar: aBv(p)Iv �~ Bv[T(O)] - �~ v(p)-- dp.
ps op

Now, if measurements are made in the H 20 or 0 3 spectral regions, and if
temperature values are known, the transmittance profile may be inferred
just as the temperature profile may be recovered when the spectral trans-
mittance is given. To relate the gaseous concentration profile to the spectral
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transmittance, we refer to Eqs. (7.29)and (7.21). There we see that the density
values are hidden in the exponent of an integral which is further complicated
by the spectral integration over the response function. Because of these
complications, retrieval of the gaseous density profile is made very difficult,
and no clear-cut mathematical analyses may be followed in the inverse of the
density values. Therefore, in the next section we focus our attention on the
temperature inversion problem.

7.3.2 Temperature Profile Inversion Problem

Inference of atmospheric temperature profile from satellite observations
of thermal infrared emission was first suggested by King (1956). In his pio-
neering paper, King pointed out that the angular radiance (intensity) distri-
bution is the Laplace transform of the Planck intensity distribution as a
function of the optical depth, and illustrated the feasibility of deriving the
temperature profile from the satellite intensity scan measurements.

Kaplan (1959) advanced the sounding concepts by demonstrating that
vertical resolution of the temperature field could be inferred from the spectral
distribution of atmospheric emission. Kaplan pointed out that observations
in the wings of a spectral band sense deeper into the atmosphere, whereas
observations in the band center see only the very top layer of the atmosphere
since the radiation mean free path is small. Thus, by properly selecting a set
of different sounding wave numbers, the observed radiances could be used
to make an interpretation leading to the vertical temperature distribution
in the atmosphere.

In order for atmospheric temperatures to be determined by measurements
of thermal emission, the source of emission must be a relatively abundant gas
of known and uniform distribution. Otherwise, the uncertainty in the abun-
dance of the gas will make ambiguous the determination of temperature from
the measurements. There are two gases in the earth-atmosphere which have
uniform abundance for altitudes below about 100 km, and which also show
emission bands in the spectral regions that are convenient for measurement.
As discussed in Section 4.2, carbon dioxide, a minor constituent with a rela-
tive volume abundance of 0.003, has infrared vibrational-rotational bands.
In addition, oxygen, a major constituent with a relative volume abundance
of 0.21, also satisfies the requirement of a uniform mixing ratio, and has a
microwave spin-rotational band. The microwave spectrum will be discussed
in the next section.

Shown in Fig. 7.5 is a spectrum of outgoing radiance in terms ofthe black-
body temperature at the vicinity of the 15 {tm band observed by IRIS (In-
frared Interferometer and Spectrometer) on the Nimbus IV satellite. The
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band observed by the IRIS on Nimbus IV. The arrows denote the spectral regions sampled by
the VTPR instrument (see Fig. 4.1).

equivalent blackbody temperature generally decreases as the center of the
band is approached. This decrease is associated with the decrease of tro-
pospheric temperature with altitude. Near about 690 cm -1, the temperature
shows a minimum which is related to the colder tropopause. Decreasing the
wave number beyond 690 em - 1, however, increases the temperature. This
is due to the increase of the temperature in the stratosphere, since the obser-
vations near the band center see only the very top layers of the atmosphere.
On the basis of the sounding principle already discussed, we could select a
set of sounding wave numbers such that a temperature profile in the tro-
posphere and lower stratosphere could be largely covered. The arrows in
Fig. 7.5 indicate an example of such a selection.
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(7.34)

Having presented the physical discussions, we now return to the basic
equation (7.32). Clearly, the temperature of the underlying surface has to be
determined first if the surface emission represents a significant contribution
to the observed radiances, which is normally true in the wing regions. For
simplicity of discussion and mathematical analyses, however, we shall drop
the surface contribution term, i.e., assuming .'Y,,(pJ = 0, and simply write

10 a.'Y,,(p)
Iv �~ B,,[T(p)] �-�~ - dp.

u« cp

Upon knowing the radiances from a set of wave numbers and the associated
transmittances, the fundamental problem encountered is, how to solve for
the function Bv[T(p)].

We note that because there is a multiplicity of wave numbers at which the
observations are made, the Planck function differs from one equation to
another depending on the wave number. Thus, it becomes vitally important
for the direct inversion problem to eliminate the wave number dependence
in this function. In the vicinity of the 15 ,um CO 2 band, it is sufficient to
approximate the Planck function in a linear form as

(7.35)

where vr denotes a fixed reference wave number, and Cli and d" are empirically
derived constants. Substituting Eq. (7.35) into Eq. (7.34) and assuming again
that .'Yv(Ps) = 0, we obtain

where we let

(
_) Iv - dv9 v =---,

C"

g(v) = L: f(p)K(v, p)dp,

f(p) = B"JT(p)], K(v,p) = �~�~�;�P�)�.

(7.36)

(7.37)

Equation (7.36) is a well-known Fredholm equation of the first kind. K(v,p),
the weighting function, is the kernel, and f(p) is the function to be recovered
from a set of g(v;), i = 1,2, ... , M, where M is the total number of wave
numbers chosen.

We shall now examine the property of the weighting function. For sim-
plicity of discussion, we shall let the response function ¢(v, v) = 1 so that the
spectral transmittance may be expressed by

ffv(p) = �f�~�v �~�: exp[ �-�~ J: kv(Pf)dPJ

Here we note that the mixing ratio q is a constant, and L1v = V 1 - V2' In the
lower atmosphere, collision broadening dominates the absorption process
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and the shape of the absorption lines is governed by the Lorentz profile

S a
k =------

v n (v - va? + a2'

The half width a is primarily proportional to the pressure (and to a lesser
degree the temperature) according to Eq. (1.37), while the line strength S also
depends on the temperature according to Eq. (4.63). Hence, the spectral
transmittance may be explicitly written as

,'1v(p) = I dv expl _CJC IP �~�(�p�'�) x(p')dp' J. (7.38)
JdV �~�v L g .lo tt (v - va)2 + a2(p')

The temperature dependence of the absorption coefficient introduces some
difficulties in the sounding of the temperature profile. Nevertheless, the
dependence of the transmittance on the temperature may be taken into
account in the temperature inversion process by building a set of trans-
mittances for a number of standard atmospheric profiles from which a search
could be made to give the best transmittances for a given temperature profile.

As shown in Eq. (7.38), the computation of transmittances through an
inhomogeneous atmosphere is rather involved, especially when the demands
on accuracy are high in infrared sounding applications. Thus, accurate trans-
mittance profiles are normally derived by means of line-by-line calculations,
which involve the direct integration of monochromatic transmittance over
the wave number spectral interval, weighted by an appropriate response
function if so desired. Since the monochromatic transmittance is a rapidly
varying function of wave number, numerical quadrature used for the inte-
gration must be carefully devised, and the required computational effort
is generally enormous.

All of the earlier satellite experiments for the sounding of atmospheric
temperatures of meteorological purposes have utilized the 15 flm CO 2 band.
The 15 flm CO 2 band consists of a number of individual bands which con-
tribute significantly to the absorption. The most important of these is the v2

fundamental vibrational-rotational band mentioned in Section 4.2. In addi-
tion, there are several weak bands caused by the vibrational transitions be-
tween excited states, called the hot bands, and by molecules containing less
abundant isotopes. In each of these bands there is a strong Qbranch located
at the center of the band with P branch and R branch lines almost equally
spaced on each side of the band center.

Shown in Fig. 7.6 are the transmittance and weighting function profiles
calculated for a set of Vertical Temperature Profile Radiometer (VTPR) on
the NOAA 2 satellite, which is the first satellite experiment to measure atmo-
spheric temperatures for operational meteorological use. The VTPR consists
of6 channels in the 15 flm CO 2 band with the nominal center wave numbers
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of 668.5, 677.5, 695.0, 708.8, 725.0, and 745.0 em -1 for channels 1-6, respec-
tively. The weighting function curves show from what part of the atmosphere
the upwelling radiance arises. Each peak represents the maximum contri-
bution to the upwelling radiance. Clearly, radiance comes mostly from pro-
gressively lower levels as the wave number moves from the center to the wing
of the band. It is also apparent that the weighting functions overlap some-
what, allowing finite radiance data to define the temperature profile ade-
quately.

7.3.3 Direct Linear Inversion Methods

Assume that N channels within the 15 Jim CO 2 band have been chosen to
recover the temperature profile. Let g(v;) = gi' and K(Vi'P) = Ki(p), i = 1,
2, ... , M. Thus, a set of M radiance observations give M integral equations as

gi = fO j(p)Ki(p) dp,Jps i = 1,2, ... , M. (7.39)

The solution of this equation is clearly an ill-posed problem, since the un-
known profile is a continuous function of pressure, and since there are only
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a finite number of observations. It is convenient to express f(p) as a linear
function of N variables in the form

N

f(p) = L jJWj(p),
j= I

(7.40)

where fj are unknown coefficients, and Wj(p) are the known representation
functions which could be orthogonal functions, such as polynomials or
Fourier series. It follows that

N

e. = I I, (0 Wj(p)Ki(p)dp,
j= J J», i = 1,2, ... , M. (7.41)

Upon defining the known values in the form

Aij = L: Wj(p)K;(p) dp,

we obtain

(7.42)

N

e. = I AijjJ,
j= J

i = 1,2, ... , M. (7.43)

Generally, in order to find jJ (j = 1, ... , N), one needs to have both the
gi (i = 1, ... , M) and also M 2:: N.

At this point, we shall define the meaning of a vector and of a matrix, and
introduce a number of matrix operations required for the discussion in this
section. A column vector is defined by

(7.44)

We identify vectors with column vectors in the subsequent sections. A matrix
consisting of M rows and N columns is defined bylAu

All ...

A'N J
A = �A�~�I A 22 ... A2N (7.45)

AMI AM2 AMN

A is said to be an (M x N) matrix which is also denoted by IIAijll. The vector
g can now be considered as a (M x 1) matrix.
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The transpose of a matrix A is defined as the interchange of the column
and row elements and is given by

lA"
A 21 ... AM, j

A* = At 2
A 22 ... A M2

(7.46)

A lN A 2N AMN

Thus, A* is a (N x M) matrix, and g* is then a row vector, or a (I x M) matrix.
The product of a (M x N) matrix and a (N x K) matrix gives a (M x K)

matrix. The rule is that N must be the same in the matrix product. It is clear
that the existence of AB does not imply the existence of BA, and vice versa,
and that AB"I- BA. The product of a matrix A(M x N) and a matrix
B(N x K) is given by

lD"
D12

D>Kj
D = AB = �D�~�l Dn D2K

�D�~�f�K 'DM1 DM2 ...

(7.47)

where

N

o; = I AijBj k·
j= 1

Matrix products are associative, i.e.,

A(BC) = (AB)C. (7.48)

It follows that ifB and C have dimensions (M x N) and (N x K), respectively,
A must have dimension (L x M), and the final dimension of the resulting
matrix is (L x K).

On the basis of the rule of the matrix multiplication, the product of a row
vector (1 x N) and a column vector (N x 1) gives a (1 x 1) matrix, i.e., a
scalar product. Thus,

(7.49)

But the product of a column vector (N x 1) and a row vector (l x N) gives
a (N x N) matrix, i.e., a vector product. Thus

l
f d 1 fd2

ff* = f2(1 f2(2

fNf1 fNf2

(7.50)
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Also clear is that A*(N x M) x A(M x N) is a symmetric and square matrix
(N x N). In addition, it is straightforward to prove that (AB)* = B*A*.

The inverse of a matrix is denoted by A- 1. Generally speaking, the
inverse exists only when A is a square (N x N) and the determinant of the
array det(A) is not zero (nonsingular). The procedures for inverting a matrix
are quite involved, and normally a computer is needed to perform the
inversion. A number of useful rules governing the product of matrices
involving an inverse matrix are

AA -1 = A-1A = 1, (7.51)

where 1 denotes an identity matrix.
With the preceding introduction of matrix definitions and useful opera-

tions, Eq. (7.43) can be expressed in matrix form

g = Af. (7.52)

Thus, using Eq. (7.51), we have

f = A -1g = (A*A)-lA*g. (7.53)

(7.54)i = 1, ... , M.

To find the solution f, one requires the inverse of a symmetric and square
matrix.

It has been pointed out by many studies that the solution derived from
Eq. (7.53)is unstable because the equation is underconstrained. Furthermore,
the instability of this solution may also be traced to the following sources of
error: (1) the errors arising from the numerical quadrature used for the
calculation of Aij in Eq. (7.42); (2) the approximation to the Planck function;
and (3) the numerical round-off errors. In addition, sounding radiometers
possess inherent instrumental noise, and thus the observed radiances gen-
erate errors probably in a random fashion. All of these errors make the
direct inversion from the solution of transfer equation impractical. In the
following section, we discuss a number of methods which can be utilized to
stablize the solution, and for certain instances give reasonable results.

7.3.3.1 Constrained Linear Inversion Consider the ill-posed problem
N

e. = L Aijij,
j= 1

Since, in practice, the true gi are never known because they always contain
certain measurement errors Ci' the measured data may be expressed by

(7.55)

Thus, to within the measurement error, solution ij is not unique, and the
ambiguity can be removed only by imposing an additional condition which
would enable one of the possible sets I, to be chosen.
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Next, consider the function which utilizes a least square method with
quadratic constraints in the form

N

L sf + y L (Jj - If,
j= 1

(7.56)

where y is an arbitrary smoothing coefficient which determines how strongly
the solution jj is constrained to be near the mean I; i.e., the constraint is
given by the variance of Jj.

A simple criterion for a solution is that the measurement error is mini-
mized while the solution is constrained to be close to the mean J. Thus,
we set

a
ar [I(.f AijJj - [ji)2 + yf. (Jj - 1)2J = 0, (7.57)
Jk z )=1 )=1

where k = 1, ... ,j, ... , N. This leads to

L (.f. AijJj - [ji) Aik+ yUk - 1) = O.
, )= 1

But the mean value is

N

I = N- 1 I fb
k=l

so that

h. - I = -N- 1f 1-'" + (1 - N- 1)f k-'" -N- 1fN'

In terms of matrix forms, Eq. (7.58) may be written as

A*Af - A*g + yHf = 0,

(7.58)

(7.59)

(7.60)

l1 - N-. 1
_N- 1

H= .

-N- 1

where H is a (N x N) matrix given by

_N- 1

1 - N- 1

It follows that

_N-
1 j

_N- 1

1- :N- 1

(7.61)

f = (A*A + yH)-lA*g. (7.62)

This is the equation for constrained linear inversion derived by Phillips
(1962) and Twomey (1963). The quadrature constraint for smoothing can
also be imposed on the first differences, i.e., L(Jj-1 - Jjf, or the second
differences, i.e., L(Jj-1 - 2Jj - Jj+ 1)2, and so on.
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In some inversion problems, there may be a considerable amount of
background data available by means of direct methods. It is sometimes
desirable to construct from the past data an appropriate set of base function
for approximating the unknown f. This may be accomplished by deriving
the mean J of all past data, and finding a constrained solution which would
minimize the mean square departure from this mean. If f is the known mean
value vector, then Eq. (7.58) may be written in the matrix forms

It follows that

A*Af - A*g+ y(f - f) = o.

f = (A* A + yl)-I(Ag + yf),

(7.63)

(7.64)

where 1 is an (N x N) identity matrix. This formula will give an improvement
if there is a reasonable base for selecting I

7.3.3.2 Statistical Method In many sounding problems, errors encoun-
tered are statistical in nature, and it is desirable to consider the inversion
problem by taking into account the statistical nature of the measurement
errors and other relevant information. In the statistical approach, it is
generally assumed that the deviation of the predicted parameter f (in the
present case it is the temperature) from the climatological mean may be
expressed as a linear combination of the deviation of the measured data
(in this case the radiances). Thus, we write

M

h-J:= L DjMi-g),
i= 1

j= 1,2, ... ,N, (7.65)

where T, is the predicted values of jj, which represent the true temperature
values, J: the climatological mean of jj, 9j the observed data, gi the mean
of the observed data, and IIDjil1 a certain predictor matrix.

We wish to find a linear predictor which will give the minimum mean
square deviation of the predicted (or estimated) profile from the true profile
when Eq. (7.65) is applied to a statistical ensemble of temperature profiles;
that is, to find the minimum value for

x x
L (jjx - hxf = L [(jjx - J:) - (hx - J:)J2,

x=l x=l

(7.66)

where the subscript x denotes the membership of the statistical sample
whose size is X. We note that J: = X-I L;= 1 jjx' Utilizing the assumption
postulated in Eq. (7.65), we may write

X M

G(Dji) = L [(jjx - n- L D ji(9ix - gJY
x > 1 i= 1

(7.67)
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To find the minimum with respect to the linear predictor, we set

8G(DjJ �~ [ - �~ �~ - ] �~ _
�~ = 0 = -2 L, (fjx - fj) - .L.. Dji(gix - gJ (gkx - gk),

]k x=1 1=1

k = 1,2, ... , M. (7.68)

This leads to

(7.69)

(7.71)

In terms of matrix operations, we write

x x
L: (fx - I)(gx - g)* - D L: (gx - g)(gx - g)* = 0, (7.70)

�x�~�1 x=1

where f is a N x 1 matrix, g is a M x 1 matrix, and D is a N x M matrix.
The covariance matrix for any two variables is defined by

1 x
C(fx,gx) = - I fxg;·

X x=l

Consequently, the predictor matrix may be expressed in terms of the covari-
ance matrix in the form

(7.72)

Infrared and microwave radiometers possess inherent instrumental noise
which may be accounted for in the analyses. Let the experimental random
error vector due to system noise be e. Thus, the data vector is

g = g + e,

where g is the exact value. Then the covariance matrices are given by

(7.73)

where we note that IAfx - f)e = 0, and

1 x 1 x
C(gx - g, gx - g) = X �X�~�1 (gx - g)(gx - g)* + X �X�~�l ss"

= C(gx - g, gx - g) + Cts, e), (7.75)

where Cts, e) represents the noise covariance matrix.
The covariance matrix can be constructed experimentally by collecting

coincidences of radiances derived from remote sounders with temperature
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values obtained from direct radiosonde or rocket sounding. Normally, the
D matrix is built to give a dimension N x M such that N > M so that more
temperature values may be inferred from a limited set of radiance observa-
tions. The D matrix can be estimated entirely from experiment, and the
information of the weighting functions is not needed.

7.3.3.3 Backus-Gilbert inversion Method If there are not enough mea-
surements and constraints to make the inverse problem well imposed, and
if the available measurements and constraints do not reduce the solution
error covariance sufficiently, then the inverse problem is not solvable, and
additional considerations need to be given. This is the basic concept that
Backus and Gilbert (1970) adopted in their approach to the sounding of the
solid earth using seismic waves.

In reference to Eq. (7.39), we wish to find a solution profile seen at finite
resolution, which is given by a linear function of the measurements in the
form

M

J(x) = L D;(X)gi'
i= 1

(7.76)

where M denotes the total number of channels for the spectral interval, and
x a reference level. Inserting Eq. (7.39)into Eq. (7.76)and defining the scanning
function

we obtain

A(x,p) = LDi(x)Ki(p),
i

(7.77)

J(x) = �L�~ A(x, p)J(p) dp. (7.78)

It is clear that the only way in which J(x) can exactly equal J(p) is for the
scanning function to be a Dirac delta function (j(p - x) centered at p = x.
However, for a finite number ofterms involved in the scanning function, it is
not possible, and A(x, p) will have some finite spread about each level x. A
useful measure of this spread given by Backus and Gilbert has the form

s(x) = 12 (0 (x _ p)2A 2(x,p)dp.
Jp, (7.79)

The normalization factor 12 is chosen such that when A(x, p) is a rectangular
function of width I centered on x, s(x) will have a spread equal to its width l.
A(x,p) must also have a unit area, i.e.,

�L�~ A(x,p)dp = 1. (7.80)
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To take the instrumental noise into account in the analysis, we insert
unknown random errors in the measured data to obtain

f(x) = I Di(x)(gi + Ci) = I,D;(X)gi + I, Di(x)Ci· (7.81)
i i

The variance of the solution incurred at level x due to random errors is then
given by

(7.82)

Theoretically, we would like to be able to select Di(x) such that both the
spread s(x) and the error variance (J2(X) are minimized. Unfortunately, this
cannot be done, but it is possible to minimize a linear combination of s(x)
and (J2(X) in the form

Q(x) = s(x) + y(J2(X), (7.83)

where y is a parameter between zero and infinity depending on whether the
minimization of the spread or the error should be emphasized. In carrying
out the minimization, it is convenient to normalize the weighting function
in order that

fO Ki(p)dp = u, = 1,Jps (7.84)

where we let Ui = 1 for mathematical convenience. Thus, from Eqs. (7.77) and
(7.80), we obtain

or D*(x)u = 1. (7.85)

We now minimize Q(x) with respect to Dk(x) subject to the unit area con-
straint denoted in Eqs. (7.84) and (7.85)

�:�;�k�~�~�) = 0 = �a�D�~�(�X�) {12 L: (x - p)2[�~�D�i�(�X�)�K�i�(�P�)�J dp

+ y[�~�D�i�(�X�)�C�i�J + 11 �~�D�i�(�X�)�U�} (7.86)

where 11 is an arbitrary constant. This leads to

(7.87)

where

(7.88)
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(7.89)

In terms of matrix notation (note that summation is over index i), we write

D*(x)[S(x) + yE] + (1]/2)u* = 0,

where Sand E are (M x M) matrices. Thus,

D*(x) = - (1]/2)u*[S(x)+ yEr I. (7.90)

But from Eq. (7.85), we have

D*(x)u = 1 = -(1]/2)u*[S(x) + yErlu. (7.91)

Eliminating I] from Eqs. (7.90) and (7.91), we obtain

D*(x) = u*[S(x) + fEr I /{u*[S(x) + yEr IU}. (7.92)

Here Sand E are to be obtained from Eq. (7.88). We also note that as y --+ 0,
we get the best resolution but poor noise. On the other hand, as y --+ 00, we
get poor resolution but best noise consideration. This trade-off parameter
between resolution and noise must be chosen according to applications.

7.3.4 Numerical Iteration Methods

7.3.4.1 Chahine's Relaxation Method The difficulty in reconstructing
the temperature profile from the radiance is due to the fact that the Fredholm
equation with fixed limits may not always have a solution for an arbitrary
function. Since the radiances are obtained from measurements which are
only approximate, the reduction of this problem to a linear system is mathe-
matically improper, and a nonlinear approach to the solution of the full
radiative transfer equations appears to become necessary.

The basic radiance equation is

t, = Bj(Ts)!Tj(ps) + fO B;[T(p)J O!Tli(p) dlnp, i = 1,2,... ,M, (7.93)Jps a np

where i denotes the number of the spectral channel, and the weighting
function is expressed in logarithmic scale. The Planck function in the wave
number domain may be written in the form

BJT) = avt /(ebvi/T - 1) (7.94)

(7.95)

with a = 2he 2 and b = he/K. In reference to the weighting function depicted
in Fig. 7.6, we note that for a given wave number range, the integrand reaches
a strong maximum at different pressure levels. From the mean-value theorem,
the observed upwelling radiance I j may be approximated by

- or [o.'Tj(P)JL, - �B�J�T�s�)�~�i�(�P�s�) �~ B;[T(p;)] -;1-1- Llilnp,
U np Pi
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(7.97)

(7.98)

where Pi denotes the pressure level at which the maximum weighting function
is located, and �~�i In P is the difference of the pressure at the ith level and is
defined as the effective width of the weighting functions. Let the guessed
temperature at Pi level be T(pJ Thus, the expected upwelling radiance I; is
given by

I; - B i(TJ3';(pJ = B;[T(pJJ �[�a�~�~�(�~�l�i �~�i lnp. (7.96)

Upon dividing Eq. (7.95) by Eq. (7.96), and noting that the dependence of the
Planck function on temperature variations is much stronger than that of the
weighting function, we obtain

Ii - BJTJ§;(pJ �~ B;[T(pJJ

I; - B i(Ts)3';(ps) �~ B;[T(pJJ'

When the surface contribution to the upwelling radiance is negligible or
dominant, the equation may be approximated by

Ii �~ Bi[T(pJJ
I; �~ B;[T(pJJ'

This is the relaxation equation developed by Chahine (1970).
Since most of the upwelling radiance at the strong absorption bands arises

from the upper parts of the region, whereas the radiance from the less
attenuating bands comes from progressively lower levels, it is possible to
select a set of wave numbers to recover the atmospheric temperature at
different pressure levels. The size of a set of sounding wave numbers is de-
fined by the degree of the vertical resolution required and is obviously
limited by the capacity of the sounding instrument.

Assuming now that the upwelling radiance is measured at a discrete set
of M spectral channels, and that the composition of carbon dioxide, the
instrumental slit function ¢(v, v), and the level of the weighting function peak
Pi are all known, the following iteration procedures are utilized to recover
the temperature profile T(n)(pJ at level Pi> where n is the order of iterations:

(a) Make an initial guess for T(n)(p;), n = O.
(b) Substitute T(n)(pJ into Eq. (7.93) and use an accurate quadrature

formula to evaluate the expected upwelling radiance lIn) for each sounding
channel.

(c) Compare the computed radiance values lIn) with the measured data
I.. If the residuals Rln) = IIi - Iln)l/li are less than a preset small value (say,
10- 4

) for each sounding channel, then T(n)(pJ is a solution.
(d) If the residuals are greater than the preset criterion, we apply the

relaxation equation (7.98) M times to generate a new guess for the tempera-
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ture values T(n+ l)(pJ at the selected i pressure levels. From Eqs. (7.94) and
(7.98), we have

T(n+l)(pJ = bvdln {I - [1 - exp(bvd(T(n)(Pi))]Iln)jI;}, i = 1,2, ... , M.
(7.99)

In this calculation, each sounding channel acts at one specific pressure level
Pi to relax T(n)(pJ to T(n+l)(pJ

(e) Carry out the interpolation between the temperature value at each
given level Pi to obtain the desirable profile (it is sufficient to use linear
interpolation).

(f) Finally, with this new temperature profile, go back to step (b) and
repeat until the residuals are less than the preset criterion.

7.3.4.2 Smith's Iteration Method Smith (1970) developed an iterative
solution for the temperature profile retrieval, which differs somewhat from
that of the relaxation method introduced by Chahine. As before, let I, denote
the observed radiance and lIn) the computed radiance in the nth iteration.
Then the upwelling radiance expression in Eq, (7.93) may be written as

lIn) = Bln)(TJ:T;(ps) + L: Bln)[T(p)] �a�:�~�(�~�) dlnp. (7.100)

Further, for the (n + 1) step we set

Ii = Iln+1) = Bln+1)(T
s):T;(ps) + (0 El"+l)[T(p)] a:;li(p) dlnp. (7.101)

Jps u np

Upon subtracting Eq. (7.100) from Eq. (7.101), we obtain

I, - II") = [El/!+ l)(TJ - El")(Ts)]§;(Ps)

+ (0 {BI"+1)[T(p)] _ Blnl[T(p)]} o:Ti(p) dlnp. (7.102)
Jh �o�~�p

An assumption is made at this point that for each sounding wave number
the Planck function difference for the sensed atmospheric layer is independent
of the pressure coordinate. Thus, Eq. (7.102) may be simplified to give

(7.103a)

That is,

(7.103b)

This is the iteration equation developed by Smith. Moreover, from Eq. (7.94)
we have

tv: l)(p, vJ = bvdln{l + avrlBI/!+1)[T(p)]}. (7.104)
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Since the temperature inversion problem now depends on the sounding
wave number Vi> the best approximation of the true temperature at any level
p would be given by a weighted mean of independent estimates so that

(7.1 05)

where the proper weights based on Eq. (7.102) should be approximately

W( ) = {dff;(P),
t P .'1Jp),

P < r,
P = Ps

It should be noted that the numerical technique presented above makes no
assumption about the analytical form of the profile imposed by the number
of radiance observations available. The following iteration schemes for the
temperature retrieval may now be employed:

(a) Make an initial guess for T(nl(p), n = O.
(b) Compute mnl[T(p)] from Eq. (7.94) and Ijn) from Eq. (7.100).
(c) Compute m n+ 1)[T(p)] and T(n+1)(p, vJ from Eqs. (7.103) and (7.104),

subsequently, for the desirable levels.
(d) Make a new estimate of T(n+ 1)(p) from Eq. (7.105).
(e) Compare the computed radiance values Ijnl with the measured data

I; Ifthe residuals Rjn) = [Ii - Ijnl]/Iiare less than a preset smaIl value, then
T(n+ 1 l(p) would be the solution. If not, repeat steps (b)-(d) until convergence
is achieved.

Figure 7.7 illustrates a retrieval exercise using both Chahine's and Smith's
methods. The transmittances used are those depicted in Fig. 7.6, and the true
temperature profile is shown in the figure. An isothermal profile of 3000K

was used as an initial guess, and the surface temperature was fixed at 279.5°K.
The observed radiances utilized were obtained by direct computations for
six VTPR channels at 669.0, 676.7, 694.7, 708.7, 723.6, and 746.7 em -1 using
a forward difference scheme. Numerical procedures already outlined were
followed, and a linear interpolation with respect to In p was used in the
relaxation method to get the new profile. With the residual set at 1%, the
relaxation method converged after only four iterations, and results are given
by the solid line with black dots. Since the top level at which the temperature
was calculated was about 20 mb, extrapolation to the level of 1 mb was
carried out in which the true temperature at that level was used. Recovered
results using Smith's method are displayed by the dashed line. No interpo-
lation is necessary since this method gives temperature values at desirable
levels. It took about 20 iterations to converge the solution to within 2%.
Reducing the residual did not improve the solution, however. Both methods
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Fig. 7.7 Temperature retrieval using Chahine's relaxation and Smith's iterative methods for
VTPR channels.

do not adequately recover the temperature at upper levels due to the fact that
the highest weighting function peak is at about 30 mb. It should be noted
that the retrieval exercise presented here does not account for random errors
and therefore, it is a hypothetical one.

7.3.5 Limb Scanning Method

In Sections 7.3.1 and 7.3.2, we introduced the concept of downward
viewing infrared spectral methods for the sounding of temperature pro-
files. There is another important technique for probing the atmosphere
called the limb scanning method. An instrument having a very small
optical field of view scans the limb of the earth and receives radiation from
the atmosphere over a relatively narrow layer in height. The geometry
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of limb viewing is illustrated in Fig. 7.8. A radiometer receives radiation
emitted by the atmosphere along a ray path which may be identified by
the tangent height closest to the surface. The atmosphere may be scanned
by sweeping the view direction vertically or horizontally. The advantageous
features of limb scanning for atmospheric probes are: (1)Emission originates
in the few kilometers immediately above the tangent point because of the
rapid decrease of atmospheric density and pressure. Thus, a high inherent
vertical resolution may be obtained. (2) All radiation received comes from
the atmosphere only. Variation of a changing underlying surface, which
occurs when a nadir viewing instrument is utilized, is absent. (3) There is
large opacity involved along a horizontal path. Hence, it is particularly
useful for the determination of minor gases in the upper atmosphere. (4)
The viewing direction from the satellite can be oriented in any azimuthal
direction relative to the satellite motion and covers a large area. A dis-
advantage associated with these features is the interference of clouds along
the ray path acting as bodies of infinite opacity, which may cause a con-
siderable alteration in the emerging radiation. Also, the sharp vertical
weighting function, related to a horizontal region stretching 200 km or
more along the ray path, leads to problems of interpretation oflarge changes
in the atmospheric state over this distance. For these reasons, the limb scan-
ning technique may be most useful for the exploration of composition and
structure of the stratosphere and mesosphere.

z

Ray Path z=h
Tangent Point

Fig.7.8 The geometry oflimb viewing.



7.3 Infrared Sensing from Satellites 269

In view of the limb viewing geometry, the solution of the fundamental
radiative transfer equation for a nonscattering atmosphere in local thermo-
dynamic equilibrium may be expressed by

(7.106)

where x is the distance coordinate along the ray path with the origin at the
tangent point. The principle ofthe temperature and gaseous profile inversion
problems is similar to that discussed in the previous sections. However,
because of the spherical geometry, it is necessary to change from variable
x to z in order to obtain the temperature and gaseous profile as functions
of height in the atmosphere. Thus, the limb viewing radiance may be written
in the form

(7.107)

where K; represents the weighting function which is a function of the geo-
metrical factors and the band model used with respect to height z. Figure
7.9 shows the limb viewing weighting function for a hypothetical instrument
with an infinitesimal vertical field of view for a wide spectral band 585-705
em - 1 covering most of the 15 {lm CO 2 band. It is apparent that for tangent
heights above 25 km, the major part of the contribution comes from within
about 3 km of the tangent height. Below 25 km, the weighting function takes
on the broader shape of the nadir viewing weighting functions, although a
spike still remains at the tangent point. Inversion oflimb radiance measure-
ments, in principle, may be carried out utilizing the same techniques as in
the nadir looking radiance observations.

As pointed out previously, the most significant application of the limb
scanning radiometer is to derive the temperature structure and minor
gaseous concentrations in the upper atmosphere, when the nadir looking
radiometer is incapable of deriving sufficient information for their recovery.
In the stratosphere, to a good approximation, the geostrophic approximation
may be applicable, and the geostrophic wind is related to the horizontal
gradient of the thickness. The horizontal equation of motion is given by

where VHP = VpZ is the pressure gradient force, k the unit vector in the
vertical direction, and f the Coriolis parameter. The balance between the
pressure gradient force and the Coriolis force gives the geostrophic wind

(7.108)
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Fig. 7.9 Limb viewing weighting function for the ideal case of an instrument with an infini-
tesimal vertical field of view for the spectral band 585- 705 cm - 1 covering most of the 15 flm
band of CO 2 (after Gille and House, 1971).

Let vgl and vg2 correspond to heights z1 and z2, such that z2 > z1, respectively.
Then the variation of the geostrophic wind is

M g = VgZ - vg 1 = -(g/f)Vp (l1.z) x k.

But from the hydrostatic equation we have

dp = - Pagdz,

where Pa is the air density. And upon using the equation of state

P = PaRT,

we obtain

12 2 R iP Z dpI1.z = dz = Z2 - Zl = -- T(p)-,
2, g p, P

(7.109)

(7.110)
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where R is the gas constant. Consequently, if the temperatures are known
between PI and Pz, then from Eqs. (7.109) and (7.110), the vertical change
in the geostrophic wind between two pressure surfaces can be estimated. If
the geostrophic wind at pressure level PI is known, an estimate of the geo-
strophic wind at pressure level P: can then be derived.

Winds are basic to the study of the dynamics of the upper atmosphere.
Balloon soundings of winds normally are made up to about 10 mb and are
included in conventional map analyses. The limb scanning radiometer is
capable of determining the vertical temperature from about 10 mb to l mb.
The temperature data from satellites would then provide the wind data to
the level of about 1 mb, which is essential to the understanding of the dy-
namics of the stratosphere.

7.3.6 Infrared Sensing of Cirrus Clouds

Owing to their semitransparent appearance in the infrared region, cirrus
clouds have been noted to introduce serious difficulties in infrared sensing
of atmospheric temperature and gaseous profiles, and surface conditions.
Moreover, the radiative properties of cirrus, which consist of nonspherical
ice crystals of various sizes and shapes possibly oriented in a horizontal
plane, are largely unknown. Thus, from the infrared satellite sounding
point of view, it is extremely important to derive reliable and accurate
radiative properties of cirrus from an independent set of sounding wave
numbers in conjunction with the recovery of atmospheric temperatures
and gaseous concentrations. Further, determination of the vertical ice
content over the global atmosphere is equally important from the point of
view of climatology and weather prediction.

To demonstrate cirrus clouds are global in nature, a global infrared
photograph from the sun synchronous GOES satellite for February 18,
1976, is shown in Fig. 7.10. In northern hemisphere midlatitudes, a very well-
defined cyclone, depicted by an extensive comma-shaped cloud is centered
near 500N and 175°W. North of this cloud system is the bright cirriform
canopy. Also a thin band of anticyclonically curved cirrus is located on the
southeast edge of the comma tail and extends eastward. In the north-central
Pacific Ocean, an elongated area of high clouds points east-northeast
from a tropical disturbance in the western Pacific. Moreover, another cirri-
form cloud area is present over the east-central United States. In the southern
hemisphere, the very long band of mostly high cloudiness extends from
beyond the southern tip of South America to the western Pacific Ocean.

Because of the complexity of the cloud interaction with the radiation
field of the atmosphere, study on the quantitative estimate of cloud prop-
erties by means of passive infrared sensing in the past has been limited.
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Fig.7.10 A global infrared photograph from the sun synchronous GOES satellite.

Houghton and Hunt (1971) explored the feasibility of passive remote sensing
of ice clouds by means of two wavelengths in the far infrared where absorp-
tion due to ice and water is significantly different. Recently, Liou (1977)
proposed a theoretical retrieval technique for the determination of surface
temperature, cloud thickness, cloud transmissivity, and the fraction of cloud
cover by means of four radiance measurements in the 10 /lm window region.
The proposed technique utilizes the principle of radiative transfer and pre-
sents an analytical approach to the cloud sounding problem. We shall
introduce the analyses involved in the method through which some funda-
mental problems concerning clouds will also become evident.

Assume that within the field of view of the satellite radiometer the atmo-
sphere contains fJ portion of cloudiness, and let the cloud base height and
thickness be Zb and I'1z, respectively. The spectral upwelling radiance mea-
sured by the satellite radiometer at the top of the atmosphere in partly
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cloudy condition is given by

�l�~�e = �I�1�I�~ + (1 - �I�1�)�I�~�e�,

273

(7.111)

(7.112)

where 11 denotes the fraction of cloud cover in the satellite field of view.
The clear column radiance in height coordinates is simply [see Eq. (7.22)J

�I�~�e = B,,(Ts)/T,,(00,0) + f:o
oo

B,,[T(z)J d/Tv(00, z),

and the cloudy radiance may be expressed by

�I�~ = �I�v�(�z�b�)�/�T�~�(�A�z�)�/�T�,�,�(�o�o�,�z�b + Az) + rz_=oo B,,[T(z)Jd.'1v(oo,z). (7.113)
�J�Z�-�Z�b�+�~�Z

In Eq. (7.113) the cloud transmissivity �/�T�~ is defined as the ratio of the up-
welling radiance at the cloud top to that at the cloud base, and it can be
written as

(7.114)

The upwelling radiance reaching the cloud base may be expressed anal-
ogously to Eq. (7.112) in the form

I,,(zb) = Bv(TJ.'1v(Zb' 0) + f:;b B,,[T(z)J d.'1,,(Zb' z). (7.115)

Since thin cirrus are normally fairly high in the atmosphere with their
top heights on the order of 10 km or higher, it is ideal to select spectral
wave numbers in the 10 ,urn window where the effect of water vapor absorp-
tion above the cirrus is so small that for all practical purposes it can be
neglected. Thus, we find

rz_=oo B,,[T(z)] d.'1,,(oo,z)::::: 0, /T,,(oo,Zb + Az)::::: 1. (7.116)
JZ-Zb + Az

Using Eq. (7.116), Eq. (7.111) may now be simplified to give

lye::::: (1 -11 + I1/TD{B i(Ts).'1;(Zb,O) + f==;b Bi[T(Z)Jd.'1;(Zb'Z)}, (7.117)

where we change v to i. The unknown parameters in this equation are the
fraction of cloud cover, cloud base height, surface temperature, cloud
transmissivity which is wave number dependent, and the temperature and
water vapor transmittance profiles. Even with the simplification given in
Eq. (7.116), there are several unknown variables involved associated with
the presence of clouds. The cloud base height is a difficult parameter to
determine, and its contribution to the upwelling radiance enters in the
transmittance term /T,,(Zb' 0) and the integral term. Moreover, the tempera-
ture and water vapor profiles in a partly cloudy atmosphere are also un-
known. It is obvious that physical approximations must be made for these
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two terms. We let
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(7.118)

where * is used to denote the values to be estimated from prior knowledge
of the cloud base height, and temperature and water vapor profiles below
the cloud height. Such estimates can be done using climatological data.

The cloud transmissivity defined in Eq. (7.114) depends generally on the
wave number. Examination of the transmissivity calculations using 900, 950,
1100, and 1150 em - 1 reveals that a linear relationship exists between the
transmissivities with respect to the cloud thickness in the form

i = 1,2,3,4, (7.119)

where the transmissivities of950 (2),1100 (3),and 1150 (4) em -1 are expressed
in terms of the transmissivity of 900 em -1 (1). The coefficients al-a4 are
0, -0.02, -0.25, and -0.04, respectively, and for b1-b4 , they are 1,0.99,
1.23, and 1.01, respectively.

Upon substituting Eqs. (7.118) and (7.119) into Eq. (7.117), we obtain

IpC
Q;(T.) = B.(T );'!' �~�'�!�' = 1 - 1] + 1](a;Az+ �b�J�f�f�~�, i = 1,2,3,4. (7.120)

, s y, + ,
This is a nonlinear equation and contains only four unknown parameters,
namely Ts ' 1], Az, and fft, and consequently, four radiance measurements
are required to determine these values. At this point, we close the complicated
transfer equation based on a number of physical assumptions and postulations.

Successive eliminations of 1], fft and Az give the equations

i= 3,4,

i = 2,3,4,(Ql - l)[(a;Az + �b�J�f�f�~ - 1] - (Q; - �l�)�(�f�f�~ - 1) = 0,

(Ql - Q2)[(QI - l)(a iAz + b;) - (Qi - 1)] _ 1 = 0
(Ql - Q;)[(QI - 1)(a2Az + b2) - (Q2 - 1)] ,

[Ql(b 3 - b2)+ Q2(1- b3)+ Q3(b2-1)] [Ql(a 2- a4)+ Q2a4 - Q4a2]

[Ql(b 4 - b2)+ Q2(1- b4)+ Qib2-1)][Ql(a2- a3)+ Q2a3 - Q3a2]

(7.121)

(7.122)

1 =0.

(7.123)

Equation (7.123) represents a complicated nonlinear equation consisting of
an unknown parameter T., which can be determined from a set of four
measured radiances Ifc in a partly cloudy atmosphere. On deriving the
surface temperature, the cloud thickness, the cloud transmissivity, and the
fractional cloud cover subsequently can be evaluated. Numerical experiments
have been carried out to investigate the determination of these four para-
meters simultaneously using synthetic atmospheric data, and the feasibility
of this method of inferring the cloud parameters has been illustrated.
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7.4 MICROWAVE SENSING FROM SATELLITES

7.4.1 Microwave Spectrum
and Microwave Radiation Transfer
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Water vapor and molecular oxygen exhibit absorption lines in the micro-
wave region. Below 40 GHz (1 GHz = 109 cycles/sec; note 1 em = 30 GHz)
only the weakly absorbing pressure broadened 22.235 GHz water vapor line
is dominant. This resonance absorption line arises from transitions between
the rotational states 52 3 and 61 6 , At about 31.4 GHz, air is relatively trans-
parent. It is the window between the reasonance water vapor line and the
strongly absorbing oxygen complex of lines centered around 60 GHz. The
oxygen molecule has a magnetic dipole moment arising from the combined
spins of two impaired electrons in its 32:; electronic ground state. Changes
in the orientation of the electronic spin relative to the orientation of the
molecular rotation produce a band of magnetic dipole transitions near
60 GHz and a single transition at 118.75 GHz. For frequencies greater than
120 GHz, water vapor absorption again becomes dominant due to the
strongly absorbing line at 183 GHz. Figure 7.11 show the vertical atmo-
spheric transmittance as a function of frequency for a standard atmosphere.
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Fig.7.11 Atmospheric transmittance as a function of frequency (after Grody, 1976, with
modification).



276 7 Applications of Radiative Transfer

On the basis of the discussion in Section 7.3.1, the solution of the transfer
equation for a non scattering atmosphere in local thermodynamic equilibrium
is given by

(7.124)

where if denotes the frequency, l,,(ps) represents the radiance contribution
from the surface, and the transmittance :?T,,(p,O) is expressed with respect
to the top of the atmosphere. The emissivity in the microwave region is
normally less than unity. Thus, there is a reflection contribution from the
surface. The radiance emitted from the surface would therefore be given by

(7.125)

The first term in the right-hand side of Eq. (7.125) denotes the surface emis-
sion contribution, whereas the second term represents the emission contri-
bution from the entire atmosphere to the surface, which is reflected back to
the atmosphere at the same frequency. The transmittance :?Tv(Ps' p) is now
expressed with respect to the surface.

Inserting the lower boundary condition into Eq. (7.124), the upwelling
radiance can now be expressed as

In the frequency domain, the Planck function is given by

(7.127)

In the microwave region hifjKT« 1, the Planck function may be approxi-
mated by

(7.128)

Thus, the Planck radiance is linearly proportional to the temperature, which
is referred to as the Rayleigh-Jeans law. Analogous to the above approxi-
mation, we may define an equivalent brightness temperature T B such that

(7.129)
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Substituting Eqs. (7.128) and (7.129) into Eq. (7.126), the solution of micro-
wave radiative transfer may now be written in terms of temperature as

Contribution of each term to the brightness temperature at the top of the
atmosphere is illustrated in Fig. 7.12.

Surface
Emission

Surface
Atmosphere Reflection

Fig. 7.12 Contribution of brightness temperature at the top of a clear atmosphere.

The transmittance is generally available with respect to the top of the
atmosphere; i.e., .(Tip) = g-.y(p,O). Thus, for computational purposes, it is
desirable to express g-v(Ps, p) in terms of g-v(p, 0). For monochromatic
frequencies, the transmittance is an exponential function of the optical depth
[see Eq. (7.24)]. Hence, we may express

g-v(p" p) = exp [ - �~ S;' kv(p')q(p')dP'J

= exp [ - �~ f:s

kv(p')q(p')dp' + �~ f: kv(p')q(p')dP'J

= g-v(p" O)/g-v(p, 0), (7.131)

where g-v(Ps'O), the transmittance of the entire atmosphere, is a constant
value. Thus,

g-v(Ps'O) ag-v(p, O)
[g-v(p,O)y ap

(7.132)
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(7.133)

Substituting Eq. (7.132) into Eq. (7.130), rearranging terms and letting
:7v(p,O) = :7v(p), we find

- or 1° a:7,.;(p)TB(v) = £vTs'':I '.;(Ps) + .Jv(p) �-�:�:�l�~ dp,
Ps up

where the atmospheric source term is given by

(7.134)

(7.135)

In microwave sounding, the transmittances are computed by including the
antenna gain characteristics.

A special problem area in the use of microwave for atmospheric sounding
from a satellite platform is surface emissivity. In the microwave spectrum,
emissivity values of the earth's surface vary over a considerable range, from
about 0.4 to 1.0. The emissivity of the sea surface typically ranges between
0.4 and 0.5, depending upon such variables as salinity, sea ice, surface rough-
ness, and sea foam. In addition, there is a frequency dependence with higher
frequencies displaying higher emissivity values. Over land, the emissivity
depends on the moisture content of the soil. Wetting of a soil surface results
in a rapid decrease in emissivity. The emissivity of dry soil is on the order of
0.95 to 0.97, while for wet bare soil it is about 0.80 to 0.90, depending on the
frequency. The surface emissivity appearing in the first term has a significant
effect on the brightness temperature value.

7.4.2 Atmospheric Water Information
from Microwave Sensing

One of the important applications of microwave sounding has been the
determination of atmospheric liquid water and water vapor amount since
microwaves see through heavy clouds and precipitation, which, however,
have large opacity in the infrared wavelengths. In order to derive the liquid
water and water vapor amount, it is necessary to develop an empirical
equation in which the liquid water content and water vapor amount are
explicitly given.

We return to Eq. (7.130) and perform integration by parts on the two inte-
gral terms to obtain

TB(ii) = [T(O) - �L�~ :7v(p) �a�~�;�p�) dpJ- (1 - �£�v�)�:�7�~�(�P�s�)

x [T(O) + r_
1
( ) f: s

:7v(P.) �a�~�(�p�) dPJ,
• v Ps P
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where for simplicity we use one pressure variable in the argument of the
transmittance. Moreover, we define

Xv = T(O) _ �~ fa 3
v
(p) oT(p) dp

T, T, Ps op

1 fa oT(p)= 1 + -T [1 - 3 v(p)] -;)- dp,
s Ps up

T(O) 1 IPs oT(p)
Yv = T + OT_( )T Jo 3 v(p)--;) dp

S .J V Ps s up

1 T(O) [ 1 J 1 IPs oT(p)
= 3 v(pJ + -----r: 1 - 3 v(Ps) + .'Yv(Ps)Ts Jo [1 - .Yv(p)]apdp.

Hence,

(7.136)

(7.137)

On inspection of the microwave spectrum, we find that below about 40
GHz, the transmittance 3 v(pJ ::;:: 1 so that Xv ::;:: Yv ::;:: 1. As a result of this
simplification, the brightness temperature may be approximated by

(7.138)

The transmittance for frequencies lower than 40 GHz is mainly due to the
absorption of water vapor and liquid water. It may be expressed by

(7.139)

For frequencies lower than about 40 GHz, the transmittance of liquid water
may be approximated by

(7.140)

where QoCv) is a constant which depends on the frequency and cloud tem-
perature. In a similar manner, if we select a frequency at about 22 GHz, the
water vapor transmittance may be approximated by

(7.141)

where again WaCV') is a constant. Upon substituting these two expressions
into Eq. (7.138), and neglecting second-order terms involving Q and W, we
obtain

(7.142)

Assuming that the surface temperature T; and surface emissivity Gv are
known parameters, it is evident that two brightness temperature observations
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(7.143)

at about 40 and 22 GHz can be used to determine Q and w. It is straight-
forward to show that

Q = q0 + q1T B(Vd + q2 T B(V2)'

W = W o + Wi TB(V i ) + w2TB(V2),

where wand q are quantities related to the frequencies chosen, the surface
temperature, emissivity, and empirical parameters Qo and Wo. Normally,
qi and w, are determined statistically from a sample of known brightness
temperatures and liquid water and water vapor amount in known atmo-
spheric profiles.

Staelin et at. (1976), and Grody (1976) used these equations to infer water
content and total water vapor amount from Nimbus 5 NEMS 22.235 and
31.4 GHz channels over the ocean. The coefficients were obtained by a
multidimensional regression analysis based upon computed brightness tem-
peratures with known atmospheric temperature and water profiles from
radiosondes. Computations involving the contribution of clouds and precip-
itation in the brightness temperature did not include the scattering contri-
bution due to cloud and rain drops. These authors have demonstrated the
feasibility of mapping the large scale features of liquid water and total water
vapor patterns from the water vapor (22.235 GHz) and window (31.4 GHz)
channel data. Recently, Liou and Duff (1979)derived the liquid water content
from Nimbus 6 SCAMS (Scanning Microwave Spectrometer) data utilizing
Eqs. (7.143) over land. In their simulation study of microwave radiative
transfer in nonprecipitating and precipitating cloudy atmospheres, they have
taken into account effects of scattering and absorption properties of hydro-
meteors in an inhomogeneous absorbing gaseous atmosphere. As pointed
out previously, the emissivity over land varies with wet or dry condition of the
surface. Moreover, satellite observations over the land surface do not give
information of the wet or dry conditions. Thus, they developed an empirical
means using observed brightness temperatures for SCAMS channels 2 and
3 to determine the surface characteristics, and showed some success in the
inference of meso-scale liquid water content for a data base during a two-
week period in August 1975. The problem of mapping atmospheric moisture
over land, however, is an area still requiring further investigation and verifi-
cation.

7.4.3 Temperature Retrieval from Microwave Sounders

The basic concept of inferring atmospheric temperatures from satellite
observations of thermal microwave emission in the oxygen spectrum was
developed by Meeks and Lilley (1963) in whose work the microwave weight-
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ing functions were first calculated. The prime advantage of microwave over
infrared temperature sounders is that the longer wavelength microwaves are
much less influenced by clouds and precipitation. Consequently, microwave
sounders can be effectively utilized to infer atmospheric temperatures in
all-weather conditions.

The first application of microwave techniques for the temperature profile
determination from an orbiting satellite was the Nimbus 5 Microwave Spec-
trometer experiment (NEMS). The experiment was designed to evaluate
passive microwave techniques for use on operational meteorological sat-
ellites. NEMS consisted of three channels centered at frequencies 53.65,
54.90, and 58.80 GHz in the oxygen band. The 53.65 GHz channel whose
peak of the weighting function is near the surface is effected by the surface
emissivity. The approach to recover the temperature profile utilizing the
microwave sounder has been by means of the statistical method discussed in
Section 7.3.3.2. Basically, the predictor D matrix is derived from a priori
atmospheric data from radiosonde observations. Waters et al. (1975) pre-
sented the recovered temperature profiles from NEMS data in which the
data vector of the brightness temperature was composed of seven values
based on three measured data. Influence of land, water, or a combination of
the two on the temperature retrieval was taken into account by generating
different D matrices for these three conditions.

The first microwave sounder intended for operational use was flown
aboard the Air Force DMSP (Defense Meteorological Satellite Program)
Block 5D satellite system lauched in June 1979. This microwave sensor
(SSMjT) contains seven channels at 50.5, 53.2, 54.35, 54.9, 58.4, 58.825, and
59.4 GHz. Because of the surface reflectivity effect, the weighting function
K;;(p) is defined by

TB(v) = I'.v T s:Yv(P.) + �L�~ T(p)K,,(p)dp. (7.144)

From Eq. (7.134) we have

K _( ) = 1 + (1 _ _) [:Yv(Ps)J 2 o:Yv(p)
v p I'.v :Yv(p) op' (7.145)

Displayed in Fig. 7.13 are weighting functions of seven SSMjT channels for
an incident (emergent) angle of 0° and a surface emissivity of 0.97 using a
nominal spacecraft orbit altitude of 834 km. Absorption due to molecular
oxygen and water vapor along with antenna gain characteristics are included
in the transmittance calculations. Channell is a window channel responding
strongly to the earth's surface characteristics, dense clouds, and rain. It is
used to correct the other channels for these background effects.The weighting
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Fig. 13 The weighting functions of SSM/T channels (nadir) for an emissivity of 0.97.

function peaks of channels 1 to 4 are below about 10 km, and therefore,
there would be some effects of dense clouds and precipitation on the tem-
perature retrieval.

Because of the surface emissivity effect, it would be desirable to remove it
in the statistical method of temperature retrieval so that the predictor matrix
D could be constructed over all surface conditions (Rigone and Strogryn,
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1977). For simplicity of analyses, we define

Tiv) = f:' T(p) o:;P) dp

T (-) = iO T( ) ofTv(p) d
u v p;) p,

Ps up

so that Eq. (7.130) is written in the form

TB(v) = svTsfT,;{Ps)[1 - Td(v)/Ts] + Ta(v),

Ta(v) = Tu(v) + Td(v)fTv(P.).

283

(7.146)

(7.147a)

(7.147b)

The second term in the right-hand side of Eq. (7.147a) denotes the contribu-
tion to the brightness temperature caused by the atmosphere only, and the
surface effects are contained in the first term. Since channel 1 centered at
50.5 GHz has a weighting function peak at the surface, it is utilized in the
context of removing the surface contribution for other channels. Based on
Eq. (7.147a), we may define the contribution to the brightness temperature
caused by the atmosphere only for channels 2 to 7 in the form

where

j = 2, 3, ... , 7, (7.148)

O(v) = sVi TsfTvi(Ps)[1 - TctCVi)/T.]
, s"JsfT",(pJ [1 - TctCvd/TsJ'

and

The statistical method described in Section 7.3.3.2 assumes a correlation
between the atmospheric temperature and the measured data, which in the
present case is T'; given by Eq. (7.148). Thus,

it, - 1 i) = I Dij(1'aj - 1 a)

= I Dij[1'Bj - (1'Bi - r:», - 1 aJ
j

= I Dij1'Bj - 1'B i I DijOj +I Dij(1'aioj - 1a) , (7.149)
Ni j j

where we note that T B i is not defined in Eq. (7.148), and so the first term
contains j = 2, ... ,7. In matrix notations, we find

where

T = D'TB + R, (7.150)
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and D' is a matrix whose first column is - Da and whose remaining columns
are the columns ofD. It is clear that the retrieval technique contains elements
depending mainly on the atmosphere but not on the surface, and so it should
be valid over land, water, or mixed surface conditions. The D [see Eq. (7.72)]
and R could be determined from a large number of upper air soundings for
a wide range of meteorological conditions which have been achieved over
the years and the brightness temperatures calculated for a given atmosphere.

Shown in Fig. 7.14 is an exercise of temperature retrieval using the statis-
tical covariance method. The midlatitude Spring/Fall profile of a standard
atmosphere (solid curve) is used and the observed brightness temperatures
used for the seven SSM/T channels are values theoretically calculated. The
exercise has been carried out for cases over ocean and land. It is apparent
that the procedure outlined above has very successfully removed surface
effects from the temperature retrieval. Also shown are the temperature
retrievals when a 2-km-thick precipitation layer with a base height set at
1 km, having various rainfall rates, have been added to the atmosphere.
It is seen that the surface temperature suffers increased degradation as the
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Fig. 7.14 Hypothetical temperature retrieval exercise over land and ocean using the statistical
covariance method.
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(7.151)

rainfall rate increases. Large errors in the recovered temperature profile
would be anticipated, even with microwave sounders, when the atmosphere
within the satellite field of view contains precipitation and heavy clouds.

7.5 LIDAR (OR RADAR) BACKSCATTERING

During the sixties, the advent of the laser as a source of energy opened
up a number of possibilities for new remote sensing techniques of probing
the atmosphere. The laser energy at optical frequencies is highly mono-
chromatic and coherent. And with the development of Q-switching tech-
niques, very short pulses of high power could be generated. The recognition
of the applicability ofthe high power pulsed laser by a number of atmospheric
scientists (e.g., Schotland, 1969; Collis, 1969)has prompted the development
of backscattering techniques for the detection of the composition and struc-
ture of clouds, aerosols, and minor gases in the atmosphere. The word lidar,
which originally stands for LIght Detection And Ranging, is an acronym
analogous to radar which utilizes energy source in the microwave region.
Perhaps, it may be appropriate to speak of lidar as a laser radar. Since the
advance of laser radar, which employs the same back scattering principle
as microwave radar, techniques have been developed to map and track con-
centrations of particulate matter, to study the density profile of the atmo-
sphere, and cloud compositions. More recently, advanced developments of
lidar techniques for atmospheric probes have proved fruitful. These include
the use of multiple wavelength lidars for determining the minor gaseous
composition by means of differential absorption techniques, the use of
Doppler techniques for determining the motion of particulates and molecules,
the use of depolarization techniques for inferring the water and ice in clouds,
and the use of the Raman scattering technique in which a weak scattering
occurs at a shifted wavelength for water vapor measurements. In this section,
in consistency with the theory of light scattering and radiative transfer
introduced previously, we present the basic lidar (or radar) equation which
is fundamental to all backscattering techniques, and discuss the possible
difficulties encountered in the interpretation of backscattering returns.

From the scattering theory developed in Chapter 5, the scattered flux
density for a single particle or molecule can be expressed as [see Eqs. (5.84)
and (5.111a,b), also Eq. (3.65)J

p _ pi (Is P2,1(0)
l.r - l,r r2 4n '

where the subscripts 1(2) and r(1) denote the radiation component parallel
and perpendicular to the scattering plane, respectively. Also, r is the distance
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at which scattering takes place, a; the scattering cross section, and P(0) the
phase function. Neglect the subscripts on the flux density and phase function
for the convenience of the following discussions; the backscattered flux
density due to a single particle may be written in the form

F S ( ) = F i (Js P(n)
t: 2 4 .r n

(7.152)

At this point, it may be convenient to define the backscattering cross
section (J" as the area which, when multiplied by the incident flux density,
gives the total power radiated by an isotropic source such that it radiates
the same power in the backward direction as the scatterer. Thus,

(7.153)

where 4nr 2 represents the surface area of a sphere. Consequently, the back-
scattering cross section is given by

(7.154)

Let P, denote the transmitted power so that the incident flux density may
be expressed by

(7.155)

(7.156)

where At is the cross sectional area at distance r. Let A r be the collecting
aperture; it follows that the backscattered power received is given by

s r, (JP(n)
Py o = F (n)A y = - -2 A y •

At 4nr

In view of the volume scattering cross section given by Eq. (5.116), we
may define an averaged scattering cross section as

ii, = f3s1N,

where N denotes the particle number density. Hence, after performing the
particle-size distribution integration, the averaged backscattered power is
given by

(7.157)

In reference to Fig. 7.15, let the pulse length transmitted by a lidar (or
radar) system be f\..h. For a given instance of time, the lidar receiver collects
the scattered energy from half of the pulse length. That is to say, the scattering
signal of the bottom portion returns simultaneously as the top portion which
undergoes round trip backscattering event. The total number of particles



7.5 Lidar (or Radar) Backscattering 287

Effective Scattering Volume

I

- Middle

- Bottom

T
Ahl2

'---------.----1:....-_-_'.;1 1. ToP

Fig. 7.15 The backscattering geometry of a pulsed Iidar system where '0 denotes a reference
range.

within the effective scattering volume would therefore be N �A�J�~�.�h�/�2�. Upon
utilizing the definition of the volume scattering coefficient, the backscattered
power is now given by

(7.158)

(7.159)

During the backscattering event, the energy pulse also undergoes attenua-
tion. On the basis of the Beer-Bouguer-Lambert law developed in Section
1.4.2, the actual backscattered power at the point of the receiver is

Fr = r.; exp{ - 2 �f�~ Pe(r') dr}

where 2 represents the round trip attenuation effect, r = 0 is the position
corresponding to FrO' and Pe is the volume extinction coefficient including
both scattering and absorption effects. Inserting Eq. (7.158) into Eq. (7.159),
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(7.l60a)

the backscattered power observed by the receiver now may be written

- Ar P(n) !1h { lr , ,}PAr) = P, 2 - /3, - exp - 2 /3e(r) dr .
r 4n . 2 0

This is the basic lidar (or radar) equation. Note here that r is the range. In
this development, we have neglected the energy gains corresponding to the
transmitter and receiver. For lidar or radar applications, it is customary to
use the volume backscattering coefficient similar to that given in Eq. (7.154),
i.e., /3" = P(n)/3s' Thus, we rewrite Eq. (7.160a) to obtain

Pr(r) = �P�t�A�r�/�3�,�,�(�~�)�!�1�h eXP{-2 i r
/3e(r')dr'}' (7.160b)

8nr Jo
where the collecting aperture An the transmitted power Pt , and the pulse
length !1h are all known parameters. The range r is a function of time t. But
there are two unknown parameters /3" and /3e which relate to the optical
properties and concentration of particles and/or molecules. It is not possible
to evaluate the information content of the return power in absolute terms
unless the volume backscattering coefficient /3", and the volume extinction
coefficient /3e are uniquely related.

For Rayleigh scattering, the scattering phase function for unpolarized
light at the backscattering direction from Eq. (3.64) is

pR(n) = i(l + cos? n) = 1.5.

Thus,

�/�3�~ = �1�.�5�/�3�~�.

Clearly, the ratio of backscattering to the extinction coefficient in this case
is a constant of 1.5and is not subject to fluctuations. For a single Mie spherical
particle, however, the scattering phase function depends on the size parameter
2na/A and is characterized by strong forward scattering (see Fig. 5.4). pM(n)
as a function of the size parameter fluctuates greatly and is normally less
than unity. But for a sample of polydispersed spheres, the fluctuations tend
to average out [see Figs. (5.11) and (5.12)J, and useful approximate values
can be determined for pM(n). For water clouds it has been found that for many
cases

�/�3�~ �~ �O�.�6�2�5�/�3�~�.

This relation is also found to be a reasonable approximation for spherical
aerosols.

Rayleigh scattering parameters are known and are constants. Thus, as-
suming that a unique relation between the volume backscattering coefficient
and volume extinction coefficient for particles could be derived, then from
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Eq. (7.16Gb) a profile of volume extinction coefficients for particles can be
inferred from the continuous backscattering power returned to the detector.
This can be done by means of successive determination of the volume extinc-
tion coefficients from the edge to the center of the target area. The volume
extinction coefficients are in turn related to the sizes and concentrations of
aerosols and cloud particles.

So far, we have neglected polarization considerations in the development
oflidar equation. In reference to Eq. (7.156), the transmitted power PI can be
generated to be vertically or horizontally polarized, while the detector can
be devised so that both polarization components are measured. This provides
additional information in regard to the particle characteristics. Because of the
geometrical symmetry, backscattering from spheres retains the same polar-
ization state as the incident energy. On the contrary, however, backscattering
from nonspherical particles produces a crosspolarized component in addition
to the polarization state of the incident energy. The ratio of the cross-
polarized component to the component which retains the same polarization
as the incident beam is defined as the back scattering depolarization ratio.
The depolarization ratio of the backscattering return, if only single scattering
is considered, is associated with the deviation of the particle shape from the
symmetrical sphere. Thus, discrimination between spherical water drops and
irregular ice crystals has been shown to be feasible through the interpretation
of depolarization values. The ice and water information is of vital importance
in the investigation of cloud microstructures and in weather modification
experiments. One complication in the backscattering and depolarization
experiments has been the effects of multiple scattering. Through multiple
scattering events, the incident electric vector is transferred from the initial
reference plane to the plane of scattering, and therefore, partial depolarization
is produced. The relative significance of multiple scattering in the back-
scattering experiment when cloud particles are involved in general is asso-
ciated with the field of view ofthe detector. Although progress has been made
in the last 10 years or so, the definitive and quantitative assessment of
multiple scattering effects in the backscattering experiment is still an area
requiring further investigation.

EXERCISES

7.1 (a) Derive Eq. (7.9) from Eqs. (7.7) and (7.8) and show that

k = n(2n)'*-z fooo C(h)dh �f�x�~�2 �Q�~�~�~�~�~�x�,

where the extinction efficiency Qe [see Eq. (5.94)] is expressed in terms of
the size parameter x.
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(b) Direct solar radiation measurements are made with a multiple
wavelength radiometer. The aerosol optical depth derived from the obser-
vation are 0.17 and 0.1 at 0.5 and 0.8 .urn, respectively. Assuming a Junge size
distribution and a constant k, what would be the shaping factor v ?

7.2 Prove Eq. (7.60) from Eq. (7.58) by assuming M = N = 2. Using the
first, second, and third differences, derive the H matrices similar to that
shown in Eq. (7.61).

7.3 Consider the following Fredholm equation of the first kind

g(k) = fol
e-kXj(x)dx,

where the kernel is given by a simple exponential function. Let the unknown
function be given in the form

j(x) = x + 4x(x - !?
(a) Derive an analytical expression for g(k) and compute g(k i) for

k, in the interval (0, 10) using Sk, = 0.5 (i = 1, 2, ... , 20).
(b)* Write the integral equation in a summation form as

20

g(kJ = I j(x)e- k iX j �~�X�j�'
i> I

i = 1,2, ... ,20.

Let �~�x�; = 0.05, compute g(k;) again, and compare with those computed from
the exact integration.

(c)* Let

Compute "Aij/l which is a 20 x 20 matrix. Use the direct linear inversion
method to recover j(xJ Compare the retrieved results with the exact values.

(d)* Perform the inversion again utilizing the linear constrained
method [Eq. (7.62)J, and let the smoothing parameter y be 1 and 10- 7

.

Compare the retrieved results with exact values.

7.4 Given the temperature profile and transmittances for the six VTPR
channels (669.0, 676.7, 694.7, 708.7, 723.6, and 746.7 em -I) in the accom-
panying table:

(a) Compute and plot the weighting functions �~�:�Y�;�(�p�)�/�~ In p as func-
tions of the pressure on a logarithmic scale. What is the physical meaning of
the weighting function?

(b)* Assume that the calculated radiances are the values observed
from the NOAA 4 VTPR instrument, recover the temperature profile from

* Simple computer programming is required.
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Atmospheric Profiles and Transmission Functions for VTPR Channels

Transmittances
Pressure Temp

(mb) CK) 2 3 4 5 6

0.8 270.7 .9198 .9817 .9890 .9922 .9931 .9968
1.4 265.0 .8846 .9733 .9837 .9891 .9906 .9953
2.1 256.4 .8429 .9637 .9777 .9861 .9879 .9940
3.1 248.3 .7979 .9508 .9704 .9817 .9848 .9925
4.4 241.9 .7520 .9344 .9612 .9783 .9810 .9906
5.9 238.2 .7061 .9139 .9497 .9732 .9763 .9885
7.9 235.0 .6591 .8890 .9358 .9670 .9709 .9859

10.3 232.7 .6094 .8591 .9188 .9597 .9645 .9828
13.1 228.8 .5562 .8239 .8980 .9506 .9570 .9790
16.5 226.3 .5001 .7831 .8740 .9403 .9485 .9747
20.4 222.5 .4423 .7369 .8470 .9290 .9392 .9701
24.9 221.1 .3840 .6853 .8168 .9167 .9290 .9652
30.2 219.5 .3266 .6291 .7831 .9033 .9180 .9600
36.1 219.0 .2716 .5691 .7458 .8887 .9065 .9546
42.9 218.5 .2203 .5064 .7051 .8728 .8945 .9489
50.5 217.9 .1738 .4424 .6609 .8555 .8821 .9431
59.1 217.4 .1329 .3785 .6136 .8366 .8695 .9370
68.6 216.8 .0980 .3160 .5638 .8162 .8567 .9307
79.2 217.3 .0693 .2563 .5119 .7941 .8437 .9241
90.9 218.0 .0468 .2008 .4584 .7699 .8304 .9173

103.8 218.8 .0299 .1510 .4043 .7436 .8163 .9101
117.9 219.7 .0179 .1080 .3508 .7152 .8029 .9026
133.3 220.7 .0100 .0727 .2988 .6847 .7884 .8946
150.2 221.7 .0052 .0456 :2496 .6520 .7731 .8861
168.5 222.6 .0024 .0264 .2042 .6175 .7570 .8771
188.4 223.6 .0010 .0139 .1634 .5812 .7397 .8674
209.9 225.2 .0004 .0066 .1275 .5431 .7212 .8569
233.1 227.5 .0001 .0028 .0968 .5033 .7011 .8454
258.0 229.7 .0000 .0011 .0711 .4615 .6792 .8325
284.8 230.2 .0000 .0004 .0508 .4195 .6561 .8187
313.6 231. 8 .0000 .0001 .0354 .3782 .6321 .8043
344.3 232.8 .0000 .0000 .0237 .3365 .6064 .7883
377.2 234.2 .0000 .0000 .0151 .2940 .5782 .7701
412.2 235.5 .0000 .0000 .0090 .2514 .5475 .7493
449.5 236.9 .0000 .0000 .0050 .2099 .5142 .7253
489.2 241.6 .0000 .0000 .0026 .1706 .4785 .6992
531.2 245.4 .0000 .0000 .0012 .1343 .4402 .6687
575.8 249.0 .0000 .0000 .0005 .1017 .3993 .6326
623.1 252.8 .0000 .0000 .0002 .0740 .3565 .5917
673.0 256.8 .0000 .0000 .0000 .0516 .3127 .5467
725.7 260.5 .0000 .0000 .0000 .0346 .2689 .4983
781.3 263.9 .0000 .0000 .0000 .0221 .2261 .4476
839.9 267.5 .0000 .0000 .0000 .0134 .1852 .3952
901.5 272.1 .0000 .0000 .0000 .0076 .1456 .3371
966.3 277.0 .0000 .0000 .0000 .0039 .1064 .2682

1019.8 279.5 .0000 .0000 .0000 .0019 .0770 .2099

these radiances utilizing the relaxation method outlined in Section 7.3.4.1
Use a linear interpolation between the recovered temperatures and use the
true temperatures for the surface and the top layer. Plot the retrieved tem-
perature profile in a logarithmic scale and compare with the true temperature
profile.
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Chapter 8
RADIATION CLIMATOLOGY

8.1 GENERAL SURVEY OF RADIATION BUDGET
STUDIES OF THE EARTH-ATMOSPHERE

Knowledge about the radiation budget of the earth-atmosphere dates
back to the work of Simpson in 1928, which was based on a great many
simplifying assumptions and very sketchy radiative transfer data. It was not
until 1954 that Houghton made comprehensive calculations of the annual
heat balance of the northern hemisphere. Houghton utilized the Elsasser
radiation chart described in Chapter 4 to compute the infrared flux at the
top of the atmosphere, and used observations from a pyrheliometric network
to derive the solar radiation reaching the surface. Rayleigh scattering and
absorption by water vapor and carbon dioxide were considered through
somewhat crudely parameterized methods. Absorption by ozone, however,
was neglected. Houghton performed a useful computation of zonally average
surface albedos, which had not been done previously. Upon using the avail-
able information about cloud albedos, he computed reasonable values for
the mean annual albedo of the hemisphere and zonally averaged latitude
belts. The global albedo was determined to be 0.34.

London (1957) developed a radiation balance model for the northern
hemisphere, which included for the first time results for the vertical, latitu-
dinal, and seasonal distributions of radiative heating and cooling, and vertical
fluxes of solar and thermal infrared radiation. The Elsasser radiation chart
again was used to calculate thermal infrared flux, while empirical expressions
were employed for the absorption and scattering of solar radiation by water

293
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vapor and aerosols. Ozone and carbon dioxide effects were not considered
in the calculation. A cloud distribution consisting of heights and thicknesses
of six cloud types was used along with their climatological values offractional
cloudiness at lO-degree latitude belts. This cloud climatology is the only one
of its kind still in existence. London derived the global albedo to be 0.35.

Davis (1963) presented the atmospheric heat budget along with computa-
tions of net flux oflatent heat and sensible heat from the earth's surface to the
atmosphere for the latitude belt 200N and 700N. Infrared cooling rates were
computed with the use of several approximations for flux transmittances.
Empirical expressions for absorption by water vapor, carbon dioxide, and
ozone were used to compute the solar heating rates. Scattering by clouds and
aerosols, however, was not considered in the study.

The radiation budget model of Katayama (1966) for the northern hemi-
sphere troposphere is extremely detailed and complete, including seasonal,
latitudinal, zonal, and hemispheric distributions of the radiative heating, and
a comprehensive discussion of energy balances. Graphical methods and the
Yamamoto radiation chart were used to compute thermal infrared fluxes.
Clouds were treated as blackbodies in the infrared, with the exception of
cirrus, which was considered to be gray. In the solar spectrum, Katayama
relied upon empirical equations integrated over the entire spectral range for
absorption by water vapor, Rayleigh scattering, reflection by clouds, and
attenuation by dust. Effects of cloud and aerosol scattering were accounted
for only by simplified approximations. Katayama first obtained a global
albedo of 0.374; from this he subtracted 2.8% of the incident solar flux to
account for absorption by stratospheric ozone which was not considered,
and obtained a corrected value of 0.346. This value is very close to the values
of 0.34 and 0.35 obtained by Houghton and London, respectively. Moreover,
Katayama also derived useful values for the latitudinal distribution of zonally
averaged albedos for January and July in the northern hemisphere.

Rodgers (1967)calculated the radiative energy budget for the region 0-70°
north, and from 1000 to 10 mb for January, April, July, and October. In this
work, parameterized equations were used in both the solar and infrared
spectra. The Goody random model was used with the Curtis-Godson ad-
justment for water vapor and carbon dioxide absorption (see Chapter 4).
Rodgers assumed all clouds to be black in the infrared region, except cirrus,
which he took to be 50% black. In the solar spectrum, Rodgers used a simply
modeled ray-tracing technique, following individual rays through the atmo-
sphere from the top to the final destination in the atmosphere, on the surface,
or back in space. For clouds, a single absorption coefficient was employed
throughout the entire solar spectrum. Aerosols, however, were not considered
in the analyses.

The radiation budget of the southern hemisphere had been largely ignored
until Sasamori et al. (1972) performed their comprehensive calculations. This
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study followed the general techniques of Houghton, London, and Katayama.
Calculations of radiation fluxes in the vertical were reduced to integration of
formulas for upward flux at the top of the atmosphere and downward flux
at the bottom. Thus, the study does not present vertical distributions of the
radiative parameters. Distributions of the fractional cloud amount were
obtained from recent observed data. London's values for heights of cloud
tops and bases again were used since there is little data available for the
southern hemisphere. Sasamori et al. compared their results with computa-
tions of other researchers and with the satellite observations. The global
albedo derived for the southern hemisphere by Sasamori et al. is 0.347.

Dopplick (1972) reported on radiative heating of the global atmosphere,
and in this study provided monthly and annual zonal mean global heating
rates in the form of latitudinal cross sections. Dopplick also presented sea-
sonal profiles of the contribution of each atmospheric constituent. For in-
frared transfer calculations, in addition to the use of the Goody random
model with the Curtis-Godson approximation, continuum absorption also
was utilized to represent water vapor transmission. Empirical fits for mea-
sured band absorption were used to compute the solar heating rate. Three
classes of the cloud distribution, determined largely from satellite observa-
tions, were considered. However, cloud scattering, and scattering and ab-
sorption by aerosols were not considered.

In a recent paper, Hunt (1977) addressed the sensitivity of the various
components of the radiation budget to changes in cloud properties. A zonally
averaged model atmosphere for both northern and southern hemispheres
and a simple radiative transfer model of the sort to be used in a general
circulation model were employed to calculate the sensitivity of heating and
cooling to changes of cloud conditions and cloud radiative properties.

More recently, in an effort to investigate the climatic effects of increasing
cirrus cloudiness in the northern hemisphere, Freeman and Liou (1979)
constructed a comprehensive atmospheric radiation budget model based on
rigorous transfer methods for solar and thermal infrared radiation. Particular
emphasis was focused on the scattering effects of clouds and aerosols. Their
analyses and some of their resulting calculations form the basis for discus-
sions presented in Section 8.4.

Satellite observations of the global radiation budget were reported by
Vonder Haar and Suomi (1971).Three very important radiation components
were given in this study. These included the reflected solar flux, absorbed
solar flux, and the outgoing thermal infrared flux at the top of the atmosphere.
Seasonal and annual latitudinal variations as well as global horizontal dis-
tributions of these components were presented. In addition, significant
radiation budget studies from satellite observations also were carried out by
Winston (1969),Raschke and Bandeen (1970),and more recently by Raschke
et al. (1973) and Smith et al. (1977).
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In this chapter we introduce broadband radiation observations, and ra-
diation balance studies from satellites. These discussions include radiation
budget studies of latitudinal zones and of the globe, as well as the importance
of the radiation budget component in the global energy balance. Following
these discussions, we present some significant radiation budget studies,
including heating and cooling within the atmosphere, and the total radiation
balance at the top of the atmosphere and the surface. Finally, simple radiation
and climatic models are introduced.

8.2 BROADBAND RADIATION OBSERVATIONS
FROM SATELLITES

8.2.1 Low Resolution Wisconsin Sensors

The first generation (TIROS-type) satellites carried the so-called Wisconsin
sensors designed by Suomi and described in detail by Suomi et al. (1967).
The instrument consists of a matched pair of spherical black and white
sensors utilizing thermistor detectors to measure the sensor temperature.
In a short time after exposure to various radiative components involving the
direct solar flux, solar flux reflected by the earth and atmosphere (short-wave),
and thermal infrared flux emitted by the earth and atmosphere (long-wave),
each sensor achieves radiative equilibrium. It is assumed that the absorptivity
of the black sensor A b is the same for short-wave and long-wave radiation.
However, the absorptivity of the white sensor for short-wave and long-wave
radiation are given by �A�~ and �A�~�, respectively.

Let the temperatures measured by the black sensors and white sensors be
T band T w e respectively. On the basis of the Stefan-Boltzmann and Kirchhoff
laws, introduced in Chapter 1, radiative equilibrium equations for both
sensors may be expressed by

4nr 2 �A�b�O�-�T�~ = nr 2Ab(Fa + Fs+ FiR)' (8.1)

and

(8.2)

These two equations show that the emitted energy per unit time is equal to the
absorbed energy per unit time, where 4nr 2 and nr 2 represent the emission
and absorption areas, respectively, for the two spherical sensors each with
radius r. The flux densities of the reflected short-wave and long-wave radia-
tion for spherical sensors are defined by

(8.3)
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where 0 is the solid angle by which the sensor sees the earth, Is and IIR are
the radiant intensities reflected and emitted from the earth, respectively.
Note that F 0 denotes the direct solar flux density.

Upon solving the sum of the short-wave flux densities and the long-wave
flux density, we obtain

and

F 0 + F's = �[�4�o�A�~�/�(�A�~ - �A�~�)�]�(�T�~ - �T�~�)�, (8.4)

(8.5)

The direct solar flux density F0 can be evaluated from the solar constant,
which is specified prior to the experiment.

In order to derive the reflected solar flux density and the emitted thermal
infrared flux density in terms of the measured values expressed in Eg. (8.3),
the following evaluation procedures are made. According to the definition
of the flux density and the isotropic radiation assumption discussed in
Chapter 1, the reflected solar flux density is given by

Thus, the planetary albedo r can be expressed by

r = nIs/(Focos80 ), (8.6)

where the denominator represents the solar flux density available at the top
of the atmosphere normal to the plane-parallel stratification. On the basis of
Egs. (8.3) and (8.6), we have

r r; InFs = - rcos80do.
n 0

(8.7)

Since cos 80 does not vary greatly over the viewing area of the satellite, it can
be removed from the integral. Moreover, we define the average planetary
albedo of the viewing area as

It follows that

1 in
r=oJo rdo.

r = nF's/(F 0 cos 800).

(8.8)

(8.9)

In a similar manner, under the assumption of isotropic radiation, the
emitted thermal infrared flux density is given by

(8.1 0)
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where T, denotes the equivalent blackbody temperature of the earth-
atmosphere. Upon defining the average equivalent blackbody temperature
of the viewing area in the form

(8.11)

we obtain

(8.12)

The solid angle through which the sensor sees the earth is shown in Fig. 8.1
(see Exercise 1.2), and it is given by

(8.13)

Hence, the average planetary albedo r and equivalent blackbody temperature
T; can be evaluated from the black and white sensors through �F�~ and F;R'
The average reflected solar flux density and emitted thermal infrared flux
density as functions oflocation and time now may be expressed, respectively,
by

(8.14)

and

(8.15)

Averaging process with respect to time and space will be discussed in the
next section.

Satellite

Fig. 8.1 The definition of the solid angle for the earth and satellite system.
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(8.16)

Radiation budget determination from the first-generation satellites em-
ploys self-integrating radiometers. The area coverage is normally large, and
the assumption of isotropic radiation is required to derive the reflected solar
flux and emitted infrared flux. The medium resolution scanning radiometer
on board the Nimbus satellite series is an improved instrument for radiation
budget studies. The scanning radiometer permits radiation budget analyses
with a higher spatial resolution over areas on the order of 250 km by 250 km
(e.g., see Raschke and Bandeen, 1970). In addition, some aspects of the an-
isotropy of the atmospheric radiation field are incorporated into the data
reduction process. Below is a description of the evaluation procedures by
which the reflected solar and emitted infrared flux densities are determined.

The daily average reflected flux density of solar radiation is defined by

Fs(JL,ljJ) = , Fsp,ljJ;eo(t)]dt
Jday

=' dt ,2n ,n/2 Is[A,ljJ; e,fjJ; eo(t)] cos esin ededfjJ,
Jday J» Jo .

where A and ljJ denote the latitude and longitude, respectively. For a given
location (A, ljJ), the broadband scanning radiometer measures the scattered
radiance or intensity (energyjareajtimejsolid angle), which depends on the
zenithal and azimuthal angles ofthe outgoing radiation as well as the position
of the sun in terms of the solar zenith angle eo. The configuration of the
scattering geometry has been shown in Fig. 6.2.

Since the scanning radiometer detects the reflected solar radiance only at
a given scan angle, certain empirical adjustments are required in order to
evaluate the daily reflected flux. We define the empirical anisotropic scat-
tering function as

(8.17)

Prior to satellite experiments, the X function may be determined based on
aircraft and balloon observations for selected localities. Raschke and Ban-
deen (1970) derived the empirical X function shown in Fig. 8.2 for solar
zenith angles between about 35 and 60°. Once the X values have been
determined, and the assumption is made that they are independent of the
area, the daily averaged reflected solar flux can be evaluated by

FS(A,ljJ) =' X[e,fjJ; eo(t)]nIsp,ljJ; e,fjJ; eo(t)]dt.
Jday

It follows that the daily planetary albedo now can be defined by

r(A, ljJ) = Fs(A, ljJ)jQ(A),

(8.18)

(8.19)
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Fig.8.2 The dependence of the empirical anisotropic scattering function X on the zenith angle
eand azimuthal angle cPo The data here pertain to the solar zenith angle interval 35° < eo < 60"
(after Raschke and Bandeen, 1970, with modification).

where the daily insolation discussed in Chapter 2 is given by

Q(J,) = r Focos8o(t)dt.
Jday

(8.20)

In a similar manner, we may define an empirical function for the emitted
infrared radiation. Since the outgoing infrared radiation is generally assumed
to be azimuthally independent, and there is no dependence on the sun's
position, the function may be written in the form

(8.21 )

(8.22)

This function again is to be obtained prior to satellite experiments. Thus, the
daily average thermal infrared flux density can be evaluated by

�F�I�R�(�}�~�' lj;) = r FIR(X, lj;; t) dt
Jday

= 21[ r dt r"j2IIR(A,lj;;8;t)cos8sin8d8
Jday J 0

=1[ r X(8)IIR(J"lj;;8;t)dt.
Jday

Note here that radiances measured by the scanning radiometer normally are
corrected to the nadir angle (8 = 0°).

We may now define the radiation balance equation using Eqs. (8.19),
(8.20), and (8.22). For a given locality with latitude I, and longitude lj;, the net
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daily flux density may be expressed by

R(Jc, tj;) = Q(},)[1 - rUe, tj;)] - F1R( ; " tj;).
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(8.23)

To derive the zonally averaged quantities, we perform the integration over
the longitudinal direction to give

(8.24)
where the operator

Moreover, the global value may be evaluated by carrying out the integration
over the latitudinal direction as

(8.25)

where the operator

n = LL()dtj;d;,/(I'.,.tj; ,1;,).

Finally, time averaging also can be carried out to obtain the monthly and
annual radiation budget values.

8.3 RADIATION BUDGET STUDIES FROM
SATELLITE OBSERVATIONS

8.3.1 Radiation Budget of the Globe

Figures 8.3-8.5 (Vonder Haar and Suomi, 1971)illustrate satellite observed
mean annual maps of planetary albedo, infrared radiation, and net radiation,
respectively, from 1962 to 1965. Figure 8.3 depicts the map of planetary
albedo. The planetary albedos of middle and high latitude in northern and
southern hemispheres, poleward from 300N and S, show an interesting
contrast. A simple zonal pattern of albedo isopaths is seen in the southern
hemisphere owing to the less complex distribution of land and sea. The
highest albedos in the tropics are associated with deserts, such as the Sahara,
and with continental convective cloudiness in central Africa and convergent
ocean areas in the case of the equatorial eastern Pacific. Mean cloudiness
and ice and snow fields appear to be the dominant factors for the high albedos.

The mean annual long-wave radiation loss from the earth-atmosphere
system is shown in Fig. 8.4. The regional long-wave radiation from the earth-
atmosphere is primarily related to the effective mean temperature. Similar
patterns in northern and southern hemispheres are observed. The poles re-
flect a large amount of incoming solar radiation and consequently depress
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Fig.8.3 Mean annual geographical distribution of planetary albedo (after Vonder Haar and Suomi, 1971).
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the local rate of outgoing long-wave radiation emission. In low latitudes an
inverse relationship between albedo and long-wave radiation also is evident,
because strong cloud covers trap emission from the warmer underlying
surface to some extent. A notable exception to this inverse relationship
principle is in North Africa, where high albedo is associated with brightly
reflective desert surfaces from which high rates of long-wave radiation
emission are permitted by the relatively dry and cloud-free atmosphere
over the Sahara.

In Fig. 8.5, the net radiation gain and loss, using a solar constant of
2 cal em - 2 min - 1, is shown. The net radiation gain is evident through almost
the entire zone from 400N to 400S. It is flanked by radiation sinks which
generally deepen toward the poles. In the tropical zones the greatest minima
are found over the oceanic deserts west of South America and Africa. Here
the low, bright, warm clouds strongly reflect the solar energy and also emit
well in the infrared. Maxima of net radiation sources occur over clear
oceanic regions. Note that the radiation budget map is for the mean annual
case, and thus all daily and even seasonal anomalies are smoothed a great
deal. Even so, a definite distribution of relative energy gain and loss is seen
within a zone. In higher latitudes, more zonal patterns are shown, whereas
in the tropics, variations of radiation sources with longitude appear
significant.

8.3.2 Radiation Budgets of Latitudinal Zones

Based on an extended series of measurements of the earth's radiation
budget from the first (TIROS-type) and second (Nimbus and ESSA) genera-
tion United States meteorological satellites, Vonder Haar and Suomi (1971)
derived values of planetary albedo, infrared radiant emittance, and the
resulting net radiation budget for 39 months during the period 1962-1966.
Eighty percent of all observations considered in their study have been
acquired by the lower resolution Wisconsin-type sensors described in the
previous section, while the remainder has been obtained from medium
resolution scanning radiometers.

Figure 8.6 shows the satellite measured meridional profiles of the plane-
tary albedo, absorbed solar energy, and infrared loss. Latitudinally averaged
budgets are useful for indicating the effect of changing surface and atmo-
spheric conditions associated with the large-scale radiation pattern. It is
clear that the annual receipt of solar energy along the equator is some
2.5 times higher than that at the poles. On the contrary, equatorial regions
show a larger thermal infrared loss as compared to polar regions, but with
variations much less from the equator to the poles. Without horizontal net
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Fig. 8.6 Zonally averaged components of the earth's radiation budget measured during the
period 1962-1966. Note that the abscissa is scaled by the cosine of latitude (after Vonder Haar
and Suomi, 1971, with modification).

energy flows from the radiation sources in low latitudes to the sinks in higher
latitudes, the tropical regions would become increasingly hotter, while the
polar belts would grow steadily colder. It has been estimated that about
four fifths of the total energy transferred poleward is carried by the atmo-
sphere with the remainder by the ocean. We also notice that there is a lack
of equatorial symmetry with more energy being retained in the southern
subtropics than at the same latitudes in the north. On the other hand, the
Arctic is observed to gain more solar energy than the Antartic. With respect
to the planetary albedo, a value as low as 23% is found in the subtropics.
The planetary albedo ranges from 50% near the North Pole and 70% at the
South Pole. The higher values of the planetary albedo in middle and high
latitudes are associated with the strong cloudiness of the extratropical
baroclinic zone belts and high-latitude ice and snow. The global albedo is
30% for the whole earth, and for both northern and southern hemispheres
separately. Vonder Haar and Suomi also indicated significant seasonal and
annual variations of the mean meridional profiles of the radiation budget.

Figure 8.7 shows the radiation balance as a function oflatitude presented
by Raschke and Bandeen (1970) for the summer months, based on the
Nimbus II Medium Resolution Scanning Radiometer measurements. Their
results indicate higher values of planetary albedo and long-wave radiation
loss as compared with those obtained by Vonder Haar and Suomi. The
global values for the planetary albedo and long-wave radiation loss derived
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Fig. 8.7 Comparison of zonally averaged albedo and long-wave radiation derived from
Nimbus II measurements during June and July 1966 with those derived by Vonder Haar and
Suomi (after Raschke and Bandeen, 1970, with modification).

from their study are 30% and 0.345 cal em - 2 min - 1, respectively, as com-
pared with 25% and 0.330 cal em - 2 min - 1 obtained by Vonder Haar and
Suomi for the same summer months. The differences between these two
investigations simply might indicate actual variation of the earth's radiation
field in the different years. However, they might be caused by the different
measuring techniques and evaluation methods used.

8.3.3 Radiation Budget Component
in the Global Energy Balance

In the previous section, we noted that in the mean, there is a radiation
excess in the tropical region and a radiation deficit in the middle and high
latitudes. Thus, there must be a poleward energy transport in order to
balance the radiation surplus and deficit. Clearly, the energy exchange
within the earth-atmosphere system involves a number of mechanisms of
which radiative transfer represents only one component of the total energy
budget.
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The heating mechanism for an atmospheric column may be associated
with (1) the absorption of solar radiation denoted previously; (2) the con-
densation of water vapor LCv I , where L is the latent heat of vaporization
�(�~�5�9�0 cal g-I) and CvI is the gram mass of water vapor condensed per time
per area; (3) the horizontal flux of sensible heat carried by the atmospheric
motion into the column CI; and (4) the horizontal flux of sensible heat
carried by ocean currents into the column Fl' On the other hand, the cooling
mechanism for the column may be related to (1) the emission of thermal
infrared radiation to space denoted previously; (2) the evaporation of water
LCv 2 , where Cv 2 denotes the gram mass of water evaporated per time per
area; (3) the horizontal flux of sensible heat carried by the atmospheric
motion out of the column C2; and (4) the horizontal flux of sensible heat
carried by ocean currents out of the column F 2'

Let the net heating or cooling rate be QN, then the energy balance for an
atmospheric column may be expressed by

QN = Q(l - r) + LCv 1 + C1 + F 1 - FIR - LCv 2 - C2 - F 2 . (8.26)

But from Eq. (8.24) we have

R = Q(l - r) - FIR' (8.27)

Upon defining tlCv = Cv 2 - Cv b tlC = C2 - C I, and tlF = F 2 - F I , and
noting that over the period of a year or so, the net heating or cooling of the
column will be relatively small compared with the remaining terms, then the
annual energy balance equation of the earth-atmosphere system simply is
given by

R = LtlCv + tlC + tlF, (8.28)

where the last three terms represent, respectively, the net flux out of the
column of latent heat, sensible heat by atmospheric currents, and sensible
heat by ocean currents.

We note that the net flux of sensible heat by atmospheric currents, i.e.,
the rate of diabatic (nonadiabatic) heating or cooling of the column air, may
be expressed in terms of the rate of change of the enthalpy CpT and geo-
potential <I> through the first law of thermodynamics and hydrostatic equi-
librium. The quantity (C,T + <I» represents the sum of the internal and
gravitational potential energy per unit mass.

Figure 8.8a shows the latitudinal values of the components of the energy
balance equation. The net fluxes of latent heat and sensible heat by ocean
currents are estimated by Sellers (1965), and the radiation balance term is
calculated from Fig. 8.6. The atmospheric flux then is evaluated from Eq.
(8.28) based on these components.

In Fig. 8.8a net flux of sensible heat due to ocean currents is seen to have
a maximum between about 200N and 20oS. Net flux of latent heat, on the
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Fig. 8.8 (a) Annual latitudinal distribution of energy balance components (after Sellers, 1965,
with modification). (b) Total poleward energy transport required by the radiation budget and
other major components (after Vonder Haar and Suomi, 1971).

other hand, has a minimum between about lOON and lOoS owing to excess
precipitation in the tropical convective zone. There are also minima between
about 40 and 600N and S, the baroclinic zones where frequent cylonic storm
activities produce surplus precipitation. Since evaporation rates are highest
in the dry subtropics, net flux of latent heat shows a peak between about
20 and 30° in both hemispheres. The peak is much more pronounced in the
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southern hemisphere than in the northern hemisphere where subtropical
desert regions are incapable of generating enough moisture for the atmo-
sphere. Moreover, radiation excess is located between about 400S and 400N,

whereas radiation deficits are found poleward of 400S and N. From these
components, net flux of atmospheric sensible heat shows three peaks at the
equator and at about 400N and S.

On the basis of the preceding values, the poleward energy transport, i.e.,
the differential net fluxes, taking into account the latitudinal cross section
area, may be evaluated and is shown in Fig. 8.8b. Oceanic transport of
energy, which occurs in low latitudes, is found to account for about 25% and
20% of the total transport in northern and southern hemispheres, respectively.
Latent heat is transferred both toward the equator and poleward from about
25°N and S where, as mentioned previously, the evaporation maxima are
located. The latent heat flux accounts for about 20 and 25% of the total
transport in northern and southern hemispheres, respectively. Atmospheric
potential energy transport shows double maxima in both hemispheres. One
peak is located in the subtropics between about 15 and 25°, and the other in
midlatitudes between about 50 and 60°. These poleward energy transports
are required to balance the radiative transfer component.

8.4 THEORETICAL RADIATION BUDGET STUDIES

8.4.1 Model Description

In order to model the atmospheric radiation balance, radiative transfer
calculations must be accurate and efficient so that the spectral dependence
of radiation can be covered, the absorption, scattering, and emission of the
molecules and particulates can be treated adequately, and the inhomogeneity
of the atmosphere can be taken into account. Many radiative transfer
methods as discussed in Chapter 6 undoubtedly are available for the com-
prehensive radiation budget calculations. However, because of the require-
ment of computational effort, few of these techniques meet the criteria of
accuracy and efficiency for the purpose of performing the extensive calcu-
lations involved in the radiative budget model. In this section we describe
some significant results of the recent comprehensive radiative budget studies
reported by Freeman and Liou (1979), in whose work the rigorous discrete-
ordinates method for radiative transfer was utilized in the radiative budget
computations.

The spectral distribution of electromagnetic energy of importance to the
global radiation budget divides into two major segments as discussed in
Chapters 3 and 4. Radiation from the sun is essentially restricted to a wave-
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length range of about 0.1 to 5.um, with the peak energy located at about
0.47 .urn, and with negligible solar flux contained outside this range. On the
other hand, the radiation from the earth-atmosphere is contained in the
wavelength range from 5 to lO0.um with peak energy occurring at about
10 ,urn. Owing to this natural characteristic of electromagnetic radiation, the
earth's radiation budget can be treated separately in the solar and thermal
infrared radiation bands.

The theoretical computational results reported below are based on a
radiation model utilizing the discrete-ordinates method for monochromatic
radiative transfer with applications to inhomogeneous atmospheres by
matching the intensity components at predivided homogeneous layers. The
solar spectrum is divided into nine spectral intervals according to the
position of the absorption bands (see Fig. 2.6). Within the solar spectrum,
the radiative transfer algorithm includes the absorption contribution by
water vapor, oxygen, ozone, and carbon dioxide, and absorption and scat-
tering contributions by clouds and aerosols. As for the thermal infrared
radiation, band-by-band calculations for the 6.3 ,urn, continuum, and rota-
tional water vapor bands, the 15 ,urn carbon dioxide band, and the 9.6,um
ozone band (see Fig. 4.1) are performed to obtain the distribution of infrared
radiation. The bulk of the data required for the global radiation computa-
tions are the atmospheric profile, the geometrical and physical properties of
clouds, the global fractional cloudiness for each cloud type, the earth's
surface albedo, the duration of sunlight, and the zenith angle of the sun. The
atmospheric profile includes the vertical profiles of pressure, molecular and
aerosol densities, water vapor, and ozone.

The atmospheric profiles used in the radiative budget calculations were
based on comprehensive compilations reported by McClatchey et al. (1971)
in which the water vapor, ozone, pressure, density, and temperature profiles
for tropical (0-30°), midlatitude (30-60°), and arctic (60-90°) atmospheres
were given for both winter and summer seasons. The concentrations of the
uniformly mixed gases of interest, CO2 and O 2 were taken to be 5.11 x 10- 4

and 0.236 gm em - 21mb, respectively, constant with season and latitude.
Clouds were divided into six types which include (1)high clouds (Ci, Cs, Cc),

(2) middle clouds (As,Ac,) (3) low clouds (St, Sc), (4) cumulus (Cu), (5) cumu-
lonimbus (Cb), and (6) nimbostratus (Ns). The fractional cloud cover and the
cloud top and base heights for each cloud type as a function of the latitude
and season were taken from London (1957) and Katayama (1966) for the
northern hemisphere. Cloud data for the southern hemisphere were obtained
from values provided by Sasamori et al. (1972). The atmospheric aerosol
model used was a light backgroud concentration providing about 23 km
surface visibility. The size distribution assumed was a modification of the
bimodal log-normal distribution, and the particular aerosol utilized was a
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water-soluble particle. For scattering calculations, all cloud (except cirrus)
and aerosol particles were assumed to be spherical. The high cirrus were
considered to be composed exclusively of ice cylinders, randomly oriented
in a horizontal plane, with a mean length of 200 pm and a mean radius of
30 iut: The drop-size distributions for the low, middle, and stratus clouds
were based on observed data. Within the infrared spectrum all clouds except
cirrus were considered to be blackbodies.

The surface albedo of the earth is also an important parameter which
determines the amount of the transmitted solar radiation reaching the sur-
face and reflecting back into the atmosphere to be absorbed or scattered, or
to escape back into space as a component of the earth's global albedo. Values
of surface albedo for the northern and southern hemispheres were taken
from the work of Katayama and Sasamori et al., respectively.

The duration of sunlight and the solar zenith angle are important para-
meters in determining the radiation balance ofthe earth-atmosphere system.
The solar zenith angle can be computed from the angles associated with
the latitude, the declination of the sun, and the hour angle of the sun [see Eq.
(2.16)]. In general, the solar zenith angle varies significantly each hour during
the day, except in the arctic summer. Sunlight duration varies with season
and latitude.

For the computations of the interaction of solar radiation with the atmo-
sphere and surface, simultaneous absorption and scattering by gas molecules,
clouds, aerosols and the underlying surfaces for every spectral band, and
every layer in the model atmosphere must be taken into account. In the
solar band, 15 layers were used with their thicknesses varied to better resolve
the clouds and lower layers of the troposphere. For thermal infrared radia-
tion, the computational problem is somewhat simplified because surface
reflection and scattering by gas molecules and clouds (except cirrus) can be
neglected, and there is no diurnal, seasonal, or latitudinal zenith angle depen-
dence to be dealt with. Thus, only flux calculations need be performed in the
clear atmosphere. Also, effects of a light aerosol concentration are important
only in the window region. In the terrestrial infrared band, 100 layers were
utilized for the flux calculations. We shall now discuss some physical sig-
nificance of radiation features derived from the climatological data.

8.4.2 Solar Heating and Thermal Cooling Within
the Atmosphere

The broad-scale features of the planetary climate are determined by the
distribution of solar radiation over the globe. In addition to providing the
ultimate energy source for the earth's general circulation, the differential
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heating of the equatorial and polar regions is also responsible for causing
the climatic extremes between the tropical and polar latitudes. Every portion
of the earth in sunlit sky receives energy from the sun and is warmed to a
greater or lesser degree. The primary factors which determine the degree of
solar warming received by a particular region on the average are the cloud
cover and the latitude. The latitude is related to the range of solar zenith
angles experienced by the area. Additional factors are the annual range of
surface albedos, the presence of aerosols in greater or lesser concentrations,
and the water vapor and ozone contents of the atmosphere.

The zonally averaged meridional profiles of the solar heating rate are
illustrated in Figs. 8.9 and 8.10 for January and July. Maximum solar heating
of about 2.2°Cjday is observed at an altitude of about 3 to 4 km in the tropical
and subtropical regions of the summer hemisphere. Second maxima occur
in the troposphere in the summer polar regions. These are of about 1.5 to
2.0°Cjday and are caused by the duration of daylight in these regions as
well as by the occurrence of a maximum of cloudiness in the subarctic
summer. Broad, flat minima occur in the upper troposphere and lower
stratosphere in both months. Heating rates of only about 0.02 to O.04°Cjday
are observed, owing to the lack of both clouds and absorbing gases at these
altitudes. Maxima again occur in the stratosphere at about 25 km, almost
exclusively due to the presence of ozone. The heating produced is on the
order of 1.5 to 1.8°Cjday, and is an important source of heating for the upper
atmosphere. Effects of aerosols appear to increase the heating rate in the
atmosphere. Latitudinal cross sections of zonally averaged solar heating
were constructed using the climatological cloud and surface conditions ap-
plied at 100 latitude intervals and using the three atmospheric profiles de-
scribed previously.

While the radiation from the sun warms the earth's atmosphere every-
where, the role of terrestrial infrared radiation is more complex. In the
main, the thermal radiation serves to cool the atmosphere, radiating away
to space an amount of energy equivalent to the solar input, maintaining the
radiative balance. Under certain conditions, however, thermal radiation adds
to the warming of the atmosphere at particular levels and locations.

The zonally averaged meridional cooling profiles for January and July
are shown in Figs. 8.11 and 8.12. The maximum cooling takes place in the
summer stratosphere, due exclusively to ozone and carbon dioxide. Indeed,
almost all cooling above the tropopause is due to these two gases since above
about 10 km the water vapor concentration decreases drastically to a neg-
ligible amount. Ozone is also responsible for the obvious region of thermal
heating found above the tropopause in tropical and subtropical latitudes
for both seasons. This heating is associated with the increase of ozone con-
centration with height to about 23 km, resulting in a convergence offlux into
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the region. The heating in this region is supplemented by a smilar region of
heating due to carbon dioxide at the tropical tropopause and due to the
higher temperatures found both above and below the tropopause. The effect
of water vapor is to cool the clear atmosphere everywhere since there is an
increase of flux with height as the water vapor concentration decreases. A
secondary maximum of cooling occurs in tropical latitudes within the tro-
posphere, associated with the large vertical gradients of water vapor and
temperature. The effects of clouds, which tend to increase the cooling above
their tops and decrease the cooling below their bases, also are included in
this region. In the vicinity of the tropopause, water vapor exhibits a mini-
mum of cooling in the tropics, again due to the warmer temperatures above
and below the tropopause and the resulting convergence of thermal flux into
the area. Above the tropopause, because of the low concentration, very small
cooling results from water vapor; only on the order of - 0.2°Cjday or less.
Near the surface, below 4 km, owing to large water vapor density and tem-
perature gradients, another maximum of cooling occurs in the tropics and
summer midlatitudes. This cooling is offset somewhat by the increase in
warming below the cloud bases.

In summary, the net thermal cooling is dominated by water vapor below
the tropopause with maximum cooling on the order of - 2.0°Cjday occurring
in low latitudes near 10 km altitude. Another maximum at the surface, of
about - 2.0 to - 3.0°Cjday, and within the same latitude belts, is also due to
water vapor. At the tropical tropopause there exists a relatively uniform level
of heating on the order ofO.3°Cjday, resulting from the interactions of carbon
dioxide, water vapor, and clouds. Above the tropopause, the thermal cooling
effects are due to ozone and carbon dioxide. Here steadily increasing cooling
to space is found toward the summer hemisphere in the upper stratosphere,
where cooling on the order of - 5.6°Cjday is found.

The net heat budget was computed by summing the heating and cooling
rates presented earlier for each month at each latitude and atmospheric layer.
The net heating cross sections for the two months are presented in Figs. 8.13
and 8.14. Radiative cooling dominates the solar heating almost everywhere.
In the upper stratosphere, above 25 km, intense cooling due to ozone and
carbon dioxide is found. The thermal cooling of - 4 to - SOCjday completely
overshadows the solar heating by ozone to produce a net cooling of - 4 to
�~ 4SCjday. The large cooling is due, in part, to the effect of colder cloud
tops. At the tropical tropopause, near 18 km, there is a maximum long-
wave heating of about 0.35°Cjday. This occurs in the region of minimum
solar heating, about 0.025°Cjday to produce net heating. Below this region
of heating is a region of maximum cooling with values near -2.0°Cjday and
it is associated with large vertical gradients of water vapor and temperature.
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It is apparent from the cross section of radiative heating presented in
Figs. 8.13 and 8.14 that cooling by thermal infrared radiation outweighs
solar heating at every latitude for both seasons. The cooling is due primarily
to water vapor, and thus has a maximum in the tropics. The presence of
clouds tends to moderate the cooling in the lower levels of the atmosphere
by reducing the cooling below their bases and by producing strong solar
heating at their tops. Their effect varies with latitude and season, as the
cloud distribution varies. The moderately strong feature of net heating, ex-
tending from the summer pole into the tropical latitudes of the winter hemi-
sphere, at a level of about 5 km, is due to strong water vapor absorption in
the near solar infrared region augmented by solar geometry. Heating by
clouds also contributes significantly to this feature. The solar heating at
the cloud tops is partially offset by the increased thermal cooling above the
clouds, whereas below the cloud bases the small solar heating is supple-
mented by the reduced thermal cooling. The maximum heating is found in
this region near the summertime pole where the length of the period of solar
heating offsets the low solar zenith angle. Because of the low temperatures
and the cloud effects, thermal infrared cooling in this region at a height of
4 to 5 km is relatively small. In both hemispheres cooling maxima of about
- 2.0°Cjday are found in the surface layer of the winter tropics. It is due to
the maximum water vapor concentration near the surface layer and also to
a relative minimum of cloudiness in the wintertime tropics as compared with
the summer hemisphere tropics.

8.4.3 Zonally Averaged Total Radiation Budgets

In Fig. 8.15 the zonally averaged total absorption of solar radiation is
shown for January and July, and the annual mean obtained from the average
of the two months. Solid lines are results obtained by Freeman and Liou
(1979) for both northern and southern hemispheres, while dashed and dotted
lines represent those of London (1957) and Sasmori et at. (1972), respectively,
for northern and southern hemispheres. Generally, the absorption computed
in the Freeman and Liou exceeds the absorption computed by the London
and Sasamori et at. This can be accounted for by the increased absorption
due to aerosols and the effects of scattering by aerosols and clouds, which
increase the amount of energy available for absorption, in effect, by increasing
the optical path lengths through the atmosphere. Also note that London
and Sasamori et at. used empirical parameterized expressions for the scat-
tering by clouds and aerosols, but not the direct computations from Mie
and multiple scattering. On the whole, very good agreement for the annual
mean of absorption is obtained between the calculations of Freeman and
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Liou and the satellite observations presented by Vonder Haar and Suomi
(1971) in which five years of satellite data were analyzed as described in the
previous section. The largest differences occur in the polar regions, partic-
ularly in the northern hemisphere. Perhaps most of the difference may be
accounted for by departures from reality of the cloud and aerosol distri-
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butions used in the model, and in part, by the radiative transfer method of
accounting for scattering and absorption by aerosols and clouds. Some
portion of the differences also may be due to different ozone models used,
which would change the total absorption in the 0.3 and 0.5 .urn solar bands.

Shown in Fig. 8.16 are the latitudinal distributions of upwelling long-wave
flux at the top of the atmosphere. Differences between the calculations per-
formed by various authors appear to be due primarily to the different water
vapor and temperature distributions used. On the whole, the theoretical
results do an adequate job of reproducing the satellite-observed upwelling
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long-wave flux, except at the poles, where overestimation of the upward
flux occurs. Again, the distribution of clouds used in the models may play
a significant role in determining the differences between calculated and
observed values.

The values of planetary albedos are presented in Fig. 8.17. The theoretical
values include the work of Freeman and Liou (1979), London (1957), Sasa-
mori et al. (1972), and Katayama (1967). Freeman and Liou's results give
values of the planetary albedos with and without the effect of aerosols. Along
with the computed values, satellite-observed planetary albedos as reported
by Vonder Haar and Suomi (1971) and Raschke and Bandeen (1970) are also
depicted. On the average, all the computed values, both present and past,
are larger than the satellite observed values. In some cases the computed
results may exceed the satellite values by as much as 15%. Probably the most
important reason for the differences is the overestimation of cloudiness,
particularly in the tropics. Another factor is the underestimation of absorp-
tion in the atmosphere, due to uncertainties in the treatment of aerosols.

The zonally averaged net radiation budgets at the top of the atmosphere,
the surface, and the atmosphere as a whole are depicted in Fig. 8.18 for
January, July, and the annual mean. The radiation budget for the top of
the atmosphere is determined by subtracting the outgoing infrared flux at the
top of the atmosphere from the incoming solar radiation absorbed by the
earth and atmosphere. The result indicates a net gain of energy at the top of
the atmosphere in the tropics and summer hemisphere midlatitudes for
both January and July. In the annual case, the gain occurs between 400N

and 400S with losses poleward of that region. The annual global average is a
net loss of 0.023 cal cm - 2 min - 1.

At the earth's surface, the radiation budget is calculated by subtracting
the net upward terrestrial infrared radiation from the solar radiation ab-
sorbed by the surface. This quantity is positive in all of the summer hemi-
sphere and through about 35° latitude in the winter hemisphere in both
months. Annually, there is a net gain in the tropics and midlatitudes, and a
net loss in the subarctic regions of the northern hemisphere. In the southern
hemisphere, the net gain in the antarctic region is very small and may be
within the expected error of these calculations. Globally, the annual mean
shows a net gain of 0.094 cal em - 2 min - 1. The negative values in the polar
regions are caused by the high surface albedos and low water vapor contents
in the subarctic atmospheres.

By combining the solar radiation absorbed by the atmosphere with the
divergence of terrestrial infrared radiation, the net radiation loss for the
atmosphere may be obtained. In the annual case, a net global loss of 0.120
cal em - 2 min -1 is observed. This quantity represents a radiative deficit which
must be balanced by the transfer oflatent and sensible heat to the atmosphere
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from the earth's surface; if the atmosphere as a whole is considered to be in
a steady state energetically and if no heat transfer across the equator is
considered. Sasamori et al. (1972) suggest that about 77% of this deficit is
made up by the release of latent heat of condensation in the southern hemi-
sphere and about 70% in the northern hemisphere. The remainder of the
deficit then must be compensated for by the transport of sensible heat into
the lower layers of the atmosphere from the surface.

8.4.4 Global Radiation Budget

The global radiation budget of the earth-atmosphere system presented
here is based on the recent computations by Wittman (1978), who used the
radiation program described earlier. The major factors considered in the
determination of the radiation balance are the atmospheric profile, the geo-
metrical and physical properties of clouds, the global fractional cloudiness
for each cloud type, the earth's surface albedo, the duration of sunlight, and
the zenith angle ofthe sun. The atmospheric profile used in this study was an
average of the five model atmospheres. Each atmosphere includes vertical
profiles of pressure, temperature, molecular and aerosol densities, water
vapor, and ozone. The clear atmospheric aerosol loading has a ground
visibility of 23 km. The cloud geometrical properties considered are height
in the atmosphere, thickness, and horizontal extent. Mean values were ob-
tained for each of four cloud types (low cloud, middle cloud, high cloud,
and stratus) by averaging the cloud height distributions and the distributions
of fractional cloudiness.

The surface albedo of the earth is also an important parameter since it
determines the amount of transmitted solar radiation reaching the surface,
which is reflected back into the atmosphere to be absorbed or scattered, or
to escape back into space as a component of the earth's global albedo. A
global surface albedo of 0.15 was calculated from averaging northern and
southern hemispheric data with respect to season and latitude.

In general, the solar zenith angle varies significantly each hour of the day,
and sunlight duration varies with season as well as latitude. In order to
compensate for these variations, a set of weighting factors was obtained for
the six discrete solar zenith angles used in the transfer program.

The annual radiation budget of the earth-atmosphere system is presented
in Fig. 8.19. The radiation from the sun, averaged for the entire year, is
represented by 100 units. Using a solar constant of 1.94 cal em - 2 min- 1

(Thekaekara, 1976), the average insolation at the top of the atmosphere was
calculated to be 0.485 cal em - 2 min - 1. The upward flux of infrared radiation
at the surface was computed using the surface temperature in the Stefan-
Boltzmann law.
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Basically, Fig. 8.19 consists of three sections: one dealing with solar radia-
tion and the manner in which it is apportioned in the atmosphere, the second
concerning infrared radiation and its distribution, and the third dealing with
nonradiative processes. Of the 100 units of incoming solar flux, 26 are ab-
sorbed within the atmosphere, 22 by cloud-free air, and 4 by clouds. A total
of31 units are reflected back to space including 8 from cloudless atmospheres,
17 from cloudy atmospheres, and 6 directly from the earth's surface. The
remaining 43 units are absorbed by the earth's surface. Meanwhile, the earth
and the atmosphere emit thermal infrared according to the temperature and
composition distributions. The upward flux from the warmer surface ac-
counts for 115 units. The relatively colder troposphere emits both upward
and downward fluxes with 69 and 101 units at the top and surface, respec-
tively. The net upward flux at the surface, which is the difference between the
flux emitted by the surface and the downward flux from the atmosphere
reaching the surface, is 14 units. As a result of thermal emission, the atmo-
sphere loses 55 units. With the absorption of only 26 units of incoming solar
flux, the net radiative loss from the atmosphere amounts to 29 units. This
deficit is balanced by an upward flux of latent and sensible heat. According
to Sasamori et al., since the average annual ratio of sensible to latent heat
loss at the surface (Bowen ratio) has a global value of 0.27, the latent and
sensible components should read 23 and 6 units, respectively, to produce an
overall balance at the surface. It is apparent that the global atmosphere as a
whole experiences a net radiative cooling that is balanced by the latent heat
of condensation released in precipitation processes and by the conduction
of sensible heat from the underlying surface. If there were no latent and
sensible heat transfer, the earth's surface would have had a temperature
higher than the present observed value of 288° K in order to achieve the
balance requirement for radiative equilibrium.

In Table 8.1 comparisons between a number of models are presented for
the various components of the radiation budget. It should be noted that the
work of Houghton and London is for the northern hemisphere, and that of
Sasamori et al. is only for the southern hemisphere, in which highly para-
meterized methods are used in the radiative transfer calculations.

The total absorption of solar radiation computed by Wittman exceeds the
absorption computed by the previous investigators. This is due, in part, to
the increased absorption from aerosols, the effects of scattering by clouds
and aerosols, and reflection from the surface, all of which increase the amount
of energy available for absorption by increasing the optical path length
through the atmosphere. The comparisons of the global albedo show that
Wittman's value (31%) is 3-4% lower than those of the earlier works. Ac-
cording to satellite observations, an albedo of 0.30 was calculated from
TIROS, Nimbus, and ESSA satellite measurements by Vonder Haar and
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TABLE 8.1 Annual Radiation Budget of the Earth-Atmosphere System

Houghton London Sasamori Wittman
(1954) (1957) et al. (1972) (1978)

I. SOLAR RADIATION
1. Insolation at top of atmosphere 100 100.0 100 100
2. Absorption in the atmosphere

a. by the cloudless atmosphere 9 15.8 17 22
b. by clouds 10 1.6 4 4
Total Absorption 19 17.4 21 26

3. Reflection and scattering back to space
a. by atmosphere 9 6.8 6 8 QO

b. by clouds 25 24.2 29 17 I:l:l
c. by earth's surface 4.2 6 �~

e:
Total Reflection 34 35.2 35 31 �~�.

4. Abasorbed by earth's surface 8
a. direct 24 22.4 24 5" (j

b. transmitted through clouds 17 14.4 �~ 22" §'
c. scattered 6 10.<i 21 22" g

C
Total Absorption at Earth's Surface 47 47.4 45 43 II<l

""



II. INFRARED RADIATION 00

1. Net radiation from earth's surface
�~

a. total emission by earth 119 114.4 112 115
..,
e-

b. back radiation from cloudless atmosphere 34 '"0..,
c. back radiation from cloudy atmosphere 67 a
d. total back radiation 105 96.4 96 101

n
r::.

Net Radiation from Earth's Surface 14 18.0 16 14 i:O=2. Infrared radiation lost to space e:
a. from cloudless atmosphere 36 �~�.
b. from cloudy atmosphere 33

§
o:l

Total Lost to Space 66 64.8 66 69 =�~
3. Net radiation lost by atmosphere 52 46.8 51 55

CfQ

�~

III. TRANSPORT TO ATMOSPHERE �~
�~

1. Latent heat 23 18.6 23 23 ;;"
'"2. Sensible heat 10 10.8 7 6

Total Heat Transport 33 29.4 30 29

a These values represent the radiation incident on the earth's surface; therefore, the radiation reflected by the earth's
surface has been subtracted from the total.

'"'"'"'"--



332 8 Radiation Climatology

Suomi. Moreover, from Nimbus II satellite observations a value of 0.29
and 0.31 was calculated for June and July of 1966 by Raschke and Bandeen.
Using Nimbus III data, the global albedo was computed to be 0.284 by
Raschke et al. (1973), and recently a value of 0.30 was derived from the
Nimbus 6 earth radiation budget experiment data by Smith et al. (1977).

The infrared radiation emitted from the earth's surface and the atmosphere
computed by Wittman is somewhat greater than those values calculated
previously. Consequently, the net radiation from the earth's surface is smaller,
while the net radiation lost by the atmosphere is greater than those of the
earlier works. These differences result from the different water vapor, ozone,
temperature, and cloud distributions, as well as the different values of the
solar constant, and the mean temperature of the earth's surface utilized in the
studies. The global infrared heat loss of 0.335 cal em - 2 min - 1 from Wittman's
study is in good agreement with the satellite observed upwelling infrared
flux. The comprehensive study of Vonder Haar and Suomi derived a global
infrared loss of 0.34 cal em - 2 min -1 for the five-year period, 1962-1966.
Raschke et al. reported an infrared heat loss to space of 0.345 cal em - 2 min - 1

based on Nimbus III measurements during 1969-1970. Using Nimbus 6 data
for the months July and August 1975, Smith et al. calculated the long-wave
radiation flux to be 0.344 cal em - 2 min - 1.

8.4.5 Radiation and General Circulation

As illustrated in Fig. 8.19, in the mean, the net incoming solar flux ab-
sorbed by the earth-atmosphere system must be equal to the outgoing ther-
mal infrared flux emitted to space. However, as evident in Figs. 8.6 and
8.18c, the absorbed solar flux depends significantly on the latitude, having a
maximum at the equator and minima at the poles. The strong latitudinal
gradient is largely caused by the sharp decrease in insolation during the
winter season and the high surface albedo in the polar region. On the other
hand, the outgoing infrared flux is only slightly latitudinally dependent. This
is owing to the larger burden of atmospheric water vapor and the higher and
colder cloudtop temperatures in the tropics, which produce the greenhouse
effect to reduce the thermal infrared emission loss. Thus, there is a radiation
excess in the equatorial region, and a radiation deficit in the polar regions

As a result of radiative energy excess and deficit, the equator-to-pole tem-
perature gradient is generated, and subsequently, a growing store of zonal
mean available potential energy is produced. In the equatorial region, warm
air expands upward and creates a poleward pressure gradient force at the
upper altitudes. Because of the earth's rotation and the inhomogeneity of
the surface, air flows poleward from the equator, while the upper levels cool
and sink in the subtropical high pressure belts �(�~�3�0�0�) and return to the
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equator. Kinetic energy is generated as a result of work done by the hori-
zontal pressure gradient force.

This thermally driven circulation between equator and subtropics is now
called Hadley circulation or Hadley cell. Because of the earth's rotation
(Coriolis force), air flowing toward the equator at the surface deflects to the
west and creates the easterly trade winds. In the upper level of the Hadley
cell, the Coriolis deflection of the poleward moving air generates westerly
winds.

In the polar regions a similar thermally driven circulation is found. Cold
air shrinks downward, producing a poleward directed pressure gradient
force and motion in the upper altitudes. The sinking motion over the poles
results in airflow in the lower level towards the equator and into the low
pressure belts ( �~ 60°).Thus, a Hadley cell develops between the poles and the
subpolar low pressure regions. Here, the effect of the Coriolis force is the
same, i.e., east winds are produced at the surface and westerly winds aloft.
In the Hadley cell, the atmosphere may be regarded as an engine which
absorbs net heat from a high temperature reservoir and releases heat to a low
temperature reservoir. The temperature differences generate available poten-
tial energy which is in turn partly converted to kinetic energy to overcome the
effect of friction.

The poleward zonal thermal winds at the upper altitudes become unstable
(referred to as baroclinic instability) in middle latitudes and generate a reverse
cell. Here warm air sinks in the subtropical highs, and cold air rises in the
subpolar lows in which westerly winds prevail in all levels. The meridional
cell in this region cannot be explained by the direct heating and cooling
effects as in the Hadley cell, and cannot generate kinetic energy. The main-
tenance of the westerlies in middle latitudes is explained by the continuous
transfer of angular momentum from the tropics, influenced by the large-
scale wave disturbances. The baroclinic waves transport heat poleward and
will intensify until heat transport is balanced by the radiation deficit in the
polar regions.

The foregoing brief description presents a gross picture of the general
circulation of the atmosphere in relation to the earth's radiation field.

8.5 SIMPLE RADIATION AND CLIMATE MODELS

8.5.1 Global Radiative Equilibrium Model

The simpliest climate model for the earth-atmosphere system is to con-
sider the earth and the atmosphere as a whole and to evaluate the global
radiative equilibrium temperature from the balance of the incoming solar
flux and outgoing thermal infrared flux. Let the global albedo be r, the solar
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constant be S, and the radius of the earth be a., Over a long period of time,
say one year, there should be a balance between the energy absorbed and
emitted so that a radiative equilibrium temperature is maintained. Thus we
should have

na;(1 - r)S = 4na;O"T:, (8.29)

where na; represents the cross sectional area of the earth-atmosphere which
intercepts the incoming solar flux, and the spherical area 4na; denotes
emission in all directions. It follows that the equilibrium temperature of the
system is

(8.30)

With this simple equation, we may study the effect of changes in the global
albedo and/or the solar constant on the equilibrium temperature of the
entire system. However, the surface temperature which is a fundamental
parameter in climate studies cannot be related to the solar constant nor the
global albedo change. The information of the surface temperature has to be
related to the transparency and opacity of the atmosphere with respect to
solar and thermal infrared radiation, respectively.

To include the surface temperature and the radiative properties of the
atmosphere in the simplest radiative equilibrium model, we construct a two
layer model and utilize the global radiative budget parameters depicted in
Fig. 8.19. Let the mean solar absorptivity and the thermal infrared emissivity
of the earth's atmosphere be A and B, respectively, and assume that the
earth's surface is a blackbody with a temperature of T. In reference to
Fig. 8.20, we may write down the energy balance equations at the top of the
atmosphere and the surface, respectively, in the forms

Q(l - r) - MT: - (1 - B)O"T4 = 0,

Q(l - r - A) +BoT: - O"T4 = 0,

Q Qr £CTTo
4 (1- 'E) CTT4

�~ t t t
A(SOL) i"(IR) To

�~ i t T

Q(I-r-A) 'ECTTa
4 CTT 4

Fig. 8.20 Two-layer global radiative budget model.

(8.31)

(8.32)
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where Q = 8/4, and we note that the global albedo is prescribed without
reference to the reflection properties of the atmosphere or the surface. The
solutions for the surface and atmospheric temperatures are

T 4 = Q[2(1 - r) - A]/[0-(2 - e)],

�T�~ = Q[A +e(1 - r - A)]/[o-e(2 - e)].

(8.33)

(8.34)

(8.35)

These equations are highly nonlinear with many coupling terms. Thus, it is
very difficult to carry out sensitivity analyses concerning the perturbation of
the radiative parameters on temperature values. However, if the absorptivity
and emissivity of the atmosphere are assumed to be constants, the effect of
changes of the solar constant on the equilibrium surface and atmospheric
temperatures may be studied.

8.5.2 One-Dimensional Radiative Equilibrium Model
with Vertical Resolution

In Chapters 3 and 4, we introduced the concept of heating and cooling
rates due to solar and thermal infrared radiative energy transfer. Moreover,
the detailed heating and cooling rates of the earth's atmosphere based on
climatological profiles also have been presented in the previous section.
The heating and cooling rates are expressed in terms of the temperature
change with respect to time. Thus, in the presence of a purely radiative energy
exchange, the so-called radiative equilibrium may be achieved and the
vertical temperature profile formed.

Let the total solar heating rate be (aT/at)s and the total thermal infrared
cooling rate be (aT/ot)IR. Thus, the net heating or cooling for a given altitude
or pressure may be written in the form

�(�a�O�~�}�a�d = �(�O�O�~�}�R + �C�a�~�)�s�·
This equation is general and is applicable to both clear and cloudy atmo-
spheres. The state of pure radiative equilibrium may be approached by the
method of numerical integration. Let n be the time step of the integration,
and "'t be the time interval; the temperature at a given pressure level P may
be expressed by

(
OT ) <n)T(n+,)(p) = T(n)(p) + - At.
ot rad

(8.36)

An initial guess of the temperature profile is needed and numerical differ-
encing schemes need to be employed. Radiative equilibrium is reached when
the temperature difference IT(n+ I) - T(n)! is less than a small preset value.
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Specific attention should be given to the radiative equilibrium conditions at
the surface and the top of the atmosphere where the net solar flux (downward)
must be equal to the net thermal infrared flux (upward). These conditions
will ensure the radiative equilibrium of the earth's surface and the atmosphere,
and the earth as a whole.

The heavy solid curve shown in the left-hand side of Fig. 8.21 is the vertical
temperature profile derived from the radiative equilibrium calculations
reported by Manabe and Strickler (1964) for a clear atmosphere. The gases
considered are water vapor, ozone, and carbon dioxide whose profiles are
for 35°N in April. The solar constant is assumed to be 2 cal em - 2 min - 1. The
effective mean zenith angle of the sun is 60°, and the fractional daylight hour
per day is 0.5. The surface albedo used is 0.102. The term !1t is set to be 8 hr,
and the convergence criterion is 10- 3 deg day-I. The radiative equilibrium
temperatures of the upper troposphere and the surface obtained from the
numerical experiment are much lower and higher, respectively, than the
observed values. These deviations apparently are due to the neglect of the
upward heat transfer by atmospheric motion in the calculations. To overcome
this shortcoming, Manabe and Strickler introduced a simple numerical
procedure called convective adjustment to approximate the vertical heat
transport. The procedure is to adjust the lapse rate to the critical lapse rate
whenever the critical lapse rate is exceeded in the numerical iterations. The
vertical temperature profile derived from this adjustment is said to be in
thermal equilibrium. Due to the balance of the upward heat transport asso-
ciated with moist and dry convection on small and large scales and to the
transfer of radiative energy, the observed tropospheric temperature lapse
rate is about 6.5 deg km -1. This value may be used as a reference for the
critical lapse rate.

In the thermal equilibrium computations, a number of requirements must
be satisfied in the final state. These include: (1) the net incoming solar flux
must be equal to the net outgoing thermal infrared flux at the top of the
atmosphere; (2) at the surface, the difference of the net downward solar flux
and net upward thermal infrared flux must be equal to the net integrated
radiative cooling of the atmosphere so that a balance is maintained between
the net gain of energy by radiation at the surface and the loss of heat by
convection transfer into the atmosphere; and (3) the condition of local
radiative equilibrium is satisfied when the computed lapse rate is less than
the critical value.

On the basis of these physical principles, Manabe and Strickler (1964)
and Manabe and Wetheraid (1967) introduced the additional numerical
procedures: For a convective layer which is in contact with the surface, the
computed lapse rate is set to be equal to the critical lapse rate. Moreover,
to assure that the earth's surface gives away as much heat as it receives,
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(8.37)

we must have

Cp f: s (OT)(n l
dP = Cp f: s (OT)inl dP + [ - �F�l�~ + FsJ,

g at net g at rad

where FIR and F s represent the net infrared and solar flux, respectively, at
the surface, (oTjot)rad is the radiative temperature change denoted earlier,
and P, and P, are the pressures at the earth's surface and at the top of the
convective layer. For a convective layer which is within the atmosphere,
we also must have

C jP (OT)(n l C jP (oT)(n l
�~ JJ b - dP = �~ JJ b - dP
g P, at net g P, at rad

(8.38)

to ensure the energy continuity, where P; is the atmospheric pressure at the
bottom of the convective layer. For a nonconvective layer, however, we
have simply

(OT)(nl = (OT)<n l
.

at net at rad

(8.39)

The temperature iteration equation under the local-thermal equilibrium
condition then is given by

(
OT)(nltv: l l(p ) = T(nl(p) + - I1t.
at net

(8.40)

To obtain the vertical temperature profile under the local-thermal equi-
librium, the convective adjustments denoted in Eqs. (8.37) and (8.38) must
be satisfied at every time step for every predivided layer. The heavy solid
curve in the right-hand side of Fig. 8.21 shows the temperature profile
derived from the convective adjustment. It is seen that the surface tempera-
ture in local thermal equilibrium with a 6.5 deg km - 1 adjustment is 3000 K,
which is more realistic than the surface temperature of 332.3°K obtained
from pure radiative equilibrium. Furthermore, more realistic temperatures
at the upper troposphere also are obtained under thermal equilibrium.
The calculations shown in Fig. 8.21 were carried out for initial isothermal
temperature distributions of warm (solid curves) and cold (dashed curves)
cases. Note that in this case it takes almost one year to reach thermal equili-
brium temperature.

The foregoing discussions regarding radiative and thermal equilibrium
provide the fundamentals for the investigation of the variation of various
gases, aerosol, and cloudiness on the globally averaged temperature pro-
file. In the one-dimensional radiation and climate model, in which radiative
transfer and parameterized vertical convection are included, the impact
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(8.41)

of the increase of carbon dioxide and aerosols distribution on the globally
averaged temperature field may be examined.

8.5.3 Energy Balance Climate Model

The energy balance model is concerned with the computation of surface
temperature from the balance between incoming solar and outgoing in-
frared flux. The model is primarily characterized by latitudinal variations
in which global energy budgets are assumed to be expressible in terms of
surface temperature. Moreover, planetary albedo is assumed to rely upon
the ice or no ice cover, and the convergence of dynamic heat fluxes is re-
presented by either a linear function of the surface temperature deviation
or a simple diffusion law. Basically, the energy balance model may be de-
scribed by an equation of the form

oT(x, t)c at = Fs(x) - FIR(X) - R(x),

where C denotes the thermal inertia coefficient for a zonal column of the
atmosphere-ocean system, t the time, and x = sin A, where A is the latitude.
(It is more convenient to use x instead of ), in model calculations.) Fsand
FIR are the incoming solar and outgoing infrared flux densities at the top
of the atmosphere, and - R(x) denotes the divergence of the atmospheric
and oceanic heat flux. Under a steady state condition, Eq. (8.41) reduces to

(8.42)

We now introduce the basic physical principle encountered in the energy
balance climate model.

8.5.3.1 Linear Heating Law On the basis of the monthly mean values
of radiation flux density at the top of the atmosphere for 260 stations,
Budyko (1969) developed an empirical formula relating the outgoing in-
frared flux density, the surface temperature, and the fractional cloud cover
in the form

(8.43)

where T is the surface temperature, 1] the fractional cloud cover, and the
empirical constants a I = 0.324, b) = 0.00324,02 = 0.0694, and b2 = 0.00232.
Using these coefficients, FIR is in units of cal em - 2 min -), and T is in degrees
Celsius. The influence of the deviation of cloudiness from its mean global
value (50%) on the temperature is normally neglected because of the intricate
interaction of clouds with the radiation field and surface albedo. With
the fractional cloud cover 1] = 0.5, Eq. (8.43) may be rewritten in the form

FIR(X) = a + bT(x), (8.44)
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with a = 0.286calcm- 2min- 1 and b = 0.00206calcm- 2min- 1 C- I . The
physical explanation for the linear relation between the outgoing infrared
flux and the surface temperature is that since the temperature profiles have
more or less the same shape at all latitudes, the infrared cooling, which
depends on the temperature at all levels, may be expressed in terms of the
surface temperature.

The incoming solar flux density may be expressed by

Fs(x) = Qs(x)[1 - r(x)] = Qs(x)A(x), (8.45)

where Q = 5/4, 5 is the solar constant, r the planetary albedo which is
allowed to depend on temperature, A the solar flux density absorbed by the
earth-atmosphere system, and s(x) a normalized mean annual distribution
of insolation at each latitude such that ns(x) dx = 1. Qs(x) can be found
in Fig. 2.10.

Moreover, to relate the surface temperature distribution and the horizontal
heat transfer in the atmosphere and hydrosphere, Budyko derived a simple
empirical equation by comparing the observed mean latitudinal values
of R(x) with the difference of the annual mean temperature at a given latitude
and the global mean temperature T. It is given by

R(x) = c[T(x) - T],

with the empirical constant c = 0.00538 cal em - 2 min - I C - 1.

Upon substituting Eqs. (8.44) and (8.45) into Eq. (8.42), we have

Qs(x)A(x) - [a + bT(x)] = c[T(x) - T].

The surface temperature is then given by

T(x) = Qs(x)A(x) - a + cT.
c+b

(8.46)

(8.47)

(8.48)

Furthermore, over a climatological time scale, the earth-atmosphere as a
whole should be in radiative equilibrium so that

QA - (a + bT) = 0, (8.49)

where the global surface temperature, global absorptivity, and global albedo
are defined by

T = fol
T(x) dx, A = 1 - v = fol

s(x)A(x) dx. (8.50)

Consequently,
T = (QA - a)/b. (8.51)

At this point, the latitudinally dependent surface temperature may be com-
puted as a function of x for given s(x) and A(x). The planetary albedo usually
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is given by a simple step function depending on whether or not there is an
ice sheet. By letting x, represent the sine of latitude )'s of the ice line, the
absorptivity or albedo may be expressed by

x> x,

x < X s '
(8.52)

(8.53)

Computations involving the temperature as a function of x are given in
Excercise 8.4.

Using a linear perturbation analysis on the global surface temperature,
solar constant, and global albedo, i.e., letting T = To + LlT and so on, it
can be shown that the temperature at a particular latitude may be given by

T(x) = c �~ b { Qos(x)[ 1 - r(x)] ( 1 + �~�:�) - a + cT 0

+ �c�~�o �[�~�: (1 - ro - Llr) - Llr]},

where To, Qo, andr 0 are mean values for the present conditions. This equa-
tion will allow us to study effects of the change of the solar constant on the
earth's mean annual surface temperature, such that the coupling effect
of the changing global albedo, which is an indication of the change in a
glaciated area, is included. Budyko expressed Llr in terms of an empirical
function in the form 0.31(x, x.)s'(xs) , where Xs represents the present ice-
line position (xs = 0.95), I the ratio of the change in the ice-covered area
to the total area of the northern hemisphere, and s' the ratio of the mean
solar flux in the zone of the additional ice area to the mean solar flux for
the entire hemisphere.

Using Eq. (8.53), calculations can be carried out to investigate the posi-
tions of ice line for different values of LlQ/Qo. Shown in Fig. 8.22 are the
latitude As corresponding to the ice-line position, and the global temperature
T as a function of LlQ/Qo. In these calculations, the existing mean value
for the solar constant is 1.92 cal em - Z min - \ and for the global albdo, it
is 0.33. The ice-line temperature T(x s) is assumed to be - lOOC based on
climatological data. The step function for absorption is Ai = 0.38, A z =
0.68, and at the ice line it is 0.5. With a 1% change for the incoming solar
flux the global surface temperature is reduced by about soc. Further, a
1.5% decrease of the incoming solar flux decreases the global surface tem-
perature by about 9°C. The response to these decreases in temperature is
a southward advance of glaciation by 8 to 18° oflatitude, which corresponds
to the advance of Quarternary glaciation. Based on these calculations,
when LlQ/Qo is reduced by about 1.6%, the ice line reaches a latitude of
about SooN. At this latitude the global surface temperature decreases to
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Fig. 8.22 Dependence of the global surface temperature and the latitude of glaciation on the
change of incoming solar flux (after Budyko, 1969, with modification).

several tens of degrees below zero. As a result, the ice sheet begins to advance
southward all the way to the equator with no further reduction in solar
radiation required. We note here that with a constant global mean albedo
(i.e., 111' = 0), a 1% decrease in I1Q/Qo lowers the global surface temperature
by only 1.2-1SC. The significance of the ice-albedo coupling is quite
evident.

8.5.3.2 Simple Diffusion Law Instead of expressing the horizontal
heat transport in terms of a linear function of the surface temperature,
Sellers (1969) employed the energy balance equation for the earth-atmo-
sphere system denoted in Eq. (8.28)

(8.54)

Parameterized equations are proposed for the net fluxes from the transport
of water vapor by atmospheric currents Cv , and from the transport of sen-
sible heat either by atmospheric currents C or by ocean currents F. Sym-
bolically, we may write

C, = f(I1T), C = g(I1T), F = h(I1T).

That is, these transport parameters are expressed in terms of the linear
function of the surface temperature differences. Consequently, a second-order
equation in 11 T may be obtained. We note that Sellers also expressed the
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(8.57)

outgoing infrared flux density in a more sophisticated form

FIR = T 4(x){1 - mtanh[19T6(x) x �1�O�~�1�6�]�}�,

where m denotes the atmospheric attenuation coefficient. According to
Sellers, it is equal to 0.5 for present conditions.

The second-order equation in t.T for the horizontal heat transport is in
essence the diffusion approximation. On the basis ofthe diffusion law, North
(1975a,b), and Held and Suarez (1974) developed more rigorous mathematic
models. A thermal diffusion form - D V2 T for the horizontal heat transport
was adopted with D an empirical coefficient to be determined by fitting the
present climate. Thus, all the transport processes are parameterized within
the single coefficient. It is similar to an eddy diffusion approach to dispersion
by macroturbulence in the entire geofluid system. Using the spherical coor-
dinates for the Laplace operator [see Eq. (5.29)], and noting that only a one-
dimensional latitudinal variation is considered, we find

2 -D d (. dT) -D d 2 d-DV T = . - smB- = --(1 - x )- T(x), (8.55)a; sin B dA dB a; dx dx

where the polar angle B = 90° - A, and a; is the radius of the earth. Let
D' = D/a;, we find from Eq. (8.42)

d d
D' dx (1 - x 2

) dx T(x) = FIR(X) - Qs(x)A(x, xs) ' (8.56)

Since FIR and T are linearly related through Eq. (8.44), we may rewrite
Eq. (8.56) in the form

[
d 2 d 1J Q- (1 - x ) - - - F(x) = - - s(x)A(x x )

dx dx D" D" ' S'

with D" = D'lb, and we let FIR = F for convenience. We must now specify
the ice-sheet edge X

S
' It is generally assumed that if T(x) < 1;., ice will be

present, whereas if T(x) > 1;. there will be no ice. In terms of infrared flux
density F(x.) = F s ' As mentioned earlier, 1;. is normally assumed to be
- 100e. From Eq. (8.44), this corresponds to F; = 0.2680 cal em - 2 min - I.

For a mean annual model with symmetric hemispheres, the boundary
condition must be that there is no heat flux transport at the poles or across
the equator, i.e., VF(x) or VT(x) = 0 at x = 1 and 0, respectively. Thus,

(1 - X 2)1/2 �~ F(X)/ = (1 - X2) 1/2 �~ F(x) I = O. (8.58)
dx x=o dx x=1

The solution for F(x) may be obtained by expanding it in Legendre poly-
nomials in the form

(8.59)
n= even



344 8 Radiation Climatology

(8.60)

where only even terms are taken because F(x) is an even function of x in a
mean annual case, i.e., symmetric between hemispheres, and F; represent the
unknown coefficients to be determined. Since the Legendre polynomials are
the eigenfunction of the spherical diffusion equation as previously described
in Eq. (5.43) (for I = 0), we have

d d
dx (1 - x 2

) dx Pn(x) = - n(n + l)Pn(x).

Moreover, (1 - X
2)1!2 dPn(x)/dx = 0 for x = 0, 1 when n = even. It follows

that the imposed boundary conditions described in Eq. (8.58) are satisfied by
the expansion.

Upon substituting Eq. (8.59) into Eq. (8.57) and making use of the orthog-
onal property of P; (see Appendix E), we find

where

F; = QHn(xJ/[1 + n(n + I)D"], (8.61 )

(8.62)

(8.63)

which may be evaluated from the known values for 5(X) and A(x, xJ The
final procedure to complete the solution is to determine the diffusion trans-
port coefficient D". This may be done empirically by varying D" in Eq. (8.59)
with F; given in Eq. (8.61) until the present climate conditions are fitted
[xs = 0.95, F(xJ = F s ' Q = Q(xJ = QoJ. The solution now may be employed
to investigate the ice-line position as a function of Q. Upon utilizing Eqs.
(8.59) and (8.61) and letting x = x,, we obtain

Q(x) = F [I H n(XJPn(XJ ] - 1
S s n=even 1 + n(n + l)D"

The normalized mean annual distribution of insolation 5(X) may be fitted
by Legendre polynomial expansions. To a good approximation, within about
2% accuracy, it is given by

(8.64)
n=even

where 52 = - 0.482. Based on observed data, the absorptivity for ice-free
latitudes also may be fitted by polynomial expansions in the form

x < xs ' (8.65)

with do = 0.697, d2 = - 0.0779. The absorptivity over ice or snow having
50% cloud cover is assumed to be 0.38 mentioned previously. Figure 8.23a
illustrates the surface temperature distribution as a function of x based on a
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tion). (b) The ice-line position as a function of the incoming solar flux in units of its present value
(after North, 1975b, with modification).
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two-mode expansion in Eq. (8.59). Also shown are observed values. The
agreement appears quite reasonable in view of the simplicity of the diffusion
model. Dependence of the ice-line position on the change of incoming solar
flux is shown in Fig. 8.23b. The multiple-branch nature of the solution in the
simple diffusion model is apparent. The upper branch indicates a southward
advance of glaciation caused by the decrease of the incoming solar flux.
After the ice line reaches about 45-50oN, its southward advance continues
even when the incoming solar flux increases. This conclusion is essentially
consistent with the results shown in Fig. 8.22.

In a recent paper by Lindzen and Farrell (1977), it was pointed out that the
simple climate models described in the foregoing are not in reasonable
agreement with the nearly isothermal surface temperatures observed within
30° oflatitude ofthe equator. To introduce the tropical transport (referred to
as Hadley cell transport) into the simple climate models, an empirical ad-
justment is made in which a heat flux is assumed to exist. This heat flux goes
to zero for latitudes greater than some latitude Ah �(�~�2�5�°�N�)�. For the Budyko
linear heating model, Qs(x)A(x, xs) is replaced by its average over the region
o:s; A :s; Ah' Shown in Fig. 8.24 is a schematic illustration suggested by
Lindzen and Farrell for the dependence of the ice-line position on varying
incoming solar flux. At 25° latitude, identified as the Hadley stability ledge,
a reduction in the incoming solar flux does not significantly alter the ice-line
position. It is not until the reduction of solar radiation is on the order of
about 15 to 20% that the glaciation will advance continuously southward
despite the increase of the incoming solar flux. From 25° to about 60°,
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Fig. 8.24 A schematic illustration of the ice-line position as a function of the normalized
incoming solar flux with (solid lines) and without (dashed line) a Hadley adjustment (after
Lindzen and Farrell, 1977, with modification).
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identified as the moderately strong stability region, a southward advance of
glaciation is related to the decrease of incoming solar radiation. Moreover,
for A Z 60°, referred to as a weak stability region, it was suggested that the
ice-line position may be related to the orbital parameters. Comparing this
plot with those shown in Figs. 8.22 and 8.23b, it is seen that substantial
reductions in incoming solar flux (» 1.6%) are necessary for an ice-covered
earth, and that the large portions of the globe are stable.

EXERCISES

8.1 Assume that the atmosphere acts as a single isothermal layer with a
temperature T; which transmits solar radiation but absorbs all thermal
infrared radiation. Show that the global surface temperature T = 4J2T a .

Let the global albedo be 30%, and the solar constant be 1.94 cal em - 2 min - 1.

What would be the global surface temperature?

8.2 The mean global surface temperature is only about 100e. The mean
global absorptivity of solar radiation by the atmosphere is about 0.2. Use the
global albedo and solar constant given in Exercise (8.1)and compute the mean
global emissivity and temperature ofthe atmosphere. Repeat the calculation
if the solar constant decreases by 1%.

8.3 Let the global reflectivities of the atmosphere and surface be rand
r., respectively. Consider the multiple reflection between the surface and the
atmosphere and show that the global albedo of the earth-atmosphere system
is given by

8.4 (a) The normalized mean annual distribution of insolation is approx-
imately given by Eq. (8.64), and the albedo is given by the step function

{
0.62,

r(x, xJ = 0.32,
x> 0.95
x < 0.95.

Compute and plot the latitudinal surface temperature as a function of x from
Eq. (8.48).

(b) Also compute the temperature at the ice line assuming an albedo
of 0.5. Show that the solution of the ice-line position X s is quadratic. Plot x,
as a function of Q/Qo from 0.97 to 1.2.

8.5 (a) Derive Eq. (8.53) by means of a linear perturbation analysis.
(b) Show that the area covering the earth poleward of latitude I, is

given by 2rra;(l - x), where a, is the radius.
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(c)* Let sr = 0.3s'(x)1(x, xJ, where 1is the ratio of the change in the
ice-covered area to the total area of the northern hemisphere, and

1°·95s'(x) = Jxs s(x) dx.

Show that the solution of X s is given by a fourth order polynomial equation.
Compute and plot Xs as a function of /'iQ/Qo, and compare your result with
those depicted in Fig. 8.22.

8.6 From Eq. (8.61), we find

F° = QH o(xs ) , Fz = QH z(xs)/(6D" + 1).

Based on the two-mode approximation, we also have from Eq. (8.59)

F(x) = Fo + FzPz(x).

By fitting the present climate conditions, i.e. Xs = 0.95, 4Qo = 1.94 cal em - z
min-i, find the empirical coefficient D".

* Simple computer programming is required.
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Appendix A
PRINCIPAL SYMBOLS

Only the principal symbols used in this book are listed here. Some symbols
formed by adding subscripts or superscripts or primes to principal symbols
are not listed. Constants and notations that appear only once and that are
transient in nature also are not listed. Bold letters denote vectors or matrices.

a

aj

a,

a,
ax, a}" a,
an ae, 34>

A
A

A", A,
A,
B"B;"B,
B

e
e
E

Radius of a spherical particle
Radius of the earth
Radius of the sun
Gaussian weights
Amplitude of the wave in I direction
Amplitude of the wave in r direction
Unit vectors in Cartesian coordinates
Unit vectors in spherical coordinates
Area
Absorptivity
Monochromatic absorptivity
Mean absorptivity
Planck function
Magnetic induction
Velocity oflight
Specific heat at constant pressure
Covariance matrix
Distance between the earth and the sun
Mean distance between the earth and the sun
Electric displacement
Charge of an electron
Partial pressure of absorbing gas
Energy
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E" E,

r; Fit, r,
Fa
F s
FIR
g
g
G
h
h
H(p,)
�H�~�2�)

H

H" He, H4>
i

i.. i2

iI, i2 , i3 , i4

I"IA,I,
10

In
In
I" I,

Is
IIR
i,
j
J A , J" J
I n

J 2

J 3

k
k, kj

k; ky , k;

k"
K
K
I
L
L
L(x)
L j

Appendix A Principal Symbols

Exponential integral
Electric field vector
Electric field vectors parallel (/) and perpendicular (r) to a plane through the

direction of propagation
Electric field vectors in spherical coordinates
Flux, power
Coriolis parameter
Flux density (irradiance, emittance)
Monochromatic flux density
Incident solar flux density
Flux density of solar radiation
Flux density of infrared radiation
Acceleration of gravity
Asymmetry factor
Gain relative to an isotropic scatterer
Planck's constant
height, length
Chandrasehkar's H function
Hankel function of the second kind
Magnetic vector
Magnetic vectors in spherical coordinates
Square root of - 1
Spherical angles
Intensity functions in the M ie theory
Intensity (radiance)
Monochromatic intensity (radiance)
Incident intensity
Modified Bessel function of the first kind
Intensity component for each order of scattering
Intensity components parallel (/) and perpendicular (r) to a plane through the

direction of propagation
Intensity of solar radiation
Intensity of infrared radiation
Source function coefficient
Electric current density
Source function
Bessel function of the first kind
Number of quanta absorbed by O2 per unit volume per unit time per molecule
Number of quanta absorbed by 03 per unit volume per unit time per molecule
Wave number (2n/A)
Eigenvalues
Absorption coefficient
Absorption coefficient, mass extinction cross section
Boltzmann's constant
Weighting function
parallel direction
Latent heat of vaporization
Length of a ice crystal
Ladenberg and Reiche function
Coefficients in the solution of the discrete-ordinates method
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L
LP
m
m

M i j

n
n(x)
N

No
Nn

It
P
Po
P,
p(v), p(S)
P
P
P(cos0)

P" r,
P
P
Pi j

Pn

�P�~
q

Q
Q

Qe
Q,
Qa

r(/1)
r,
r
R
R

R(/1,cP; /10, cPo)
R" s,

RJ.
s
S(X)
S
S

Transformation (rotational) matrix
Degree of linear polarization
Air mass (sec 00 )

Complex index of refraction
Real part of the refractive index
Imaginary part of the refractive index
Mass of electron
Molecular weight of dry air
Transformation matrix in the Mie theory
Matrix elements in the transformation matrix
Quantum number
Particle size distribution
Number density
Avogadro's number
Neumann function
Number ofrefraction and reflection within a particle
Pressure
Standard pressure
Surface pressure
Probability function
Power
Degree of polarization
Phase function
Perpendicular (1) and parallel (2) components of the phase function
Induced dipole moment
Phase matrix
Elements of the phase matrix
Legendre polynomials
Associated Legendre polynomial
Specific humidity
The second element of the Stokes parameter
Daily insolation (also used as S/4)
Extinction efficiency
Scattering efficiency
Absorption efficiency
Perpendicular direction
Distance (also used as radius)
Reflection (or local or planetary albedo)
Surface albedo
Spherical albedo
Net flux density divergence due to solar and infrared radiation
Radius of a hexagonal crystal
Reflection function
Perpendicular (1) and parallel (2) components of the amplitude coefficients

in Fresnel formula
Reflectivity (in Chapter I)
Distance
Normalized mean annual distribution of insolation
Solar constant
Line strength
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S(fl, <P; flo, <Po)
Sf' S2

s

tdif

td i r

t
tf

T

To
T,
T,
T B
,Yv,,cT;..,Yv

s;
�c�:�Y�~�,
�,�~�~

T(fl,<P; flo, <Po)
Tc(fl, <P; flo, <Po)
u
uo,up

uv
U
v
V
x
x
X
X(fl, <P; flo, <Po)
Y

Y(fl, <P; flo, <Po)
z

z
w
ri

o:

rio

riN

13
13,
13,
13n
6
6
6,6" 6,
i5

AppendixA Principal Symbols

Chandrasehkar's scattering function
Perpendicular (1) and parallel (2) components of the scattering function in

the Mie theory
Poynting vector
Time
Diffuse transmission
Direct transmission
Global diffuse transmission
Broadband flux transmissivity
Temperature (also used as surface temperature in Section 8.5)
Standard temperature
Surface temperature
Effective equilibrium temperature of the earth
Brightness temperature
Monochromatic transmission function (transmittance, or transmissivity)
Mean transmission function
Monochromatic slab (diffuse) transmission function
Mean slab (diffuse) transmission function
Transmission function (in Chapter 6)
Chandrasehkar's transmission function
Path length
Amplitude of the wave disturbance in the diffraction theory
Energy density
The third element of the Stokes parameters
Velocity
Fourth element of the Stokes parameters
Size parameter (ka)
Sine of the latitude (sin },)
One of the Cartesian coordinates
Chandrasehkar's X function
One of the Cartesian coordinates
Chandrasehkar's Y function
height
One of the Cartesian coordinates
Equivalent width
Lorentz half width
Polarizability (in Chapter 3)
Doppler half width
Natural half width
Angle denoting the ellipticity
Extinction coefficient
Scattering coefficient
Backscattering coefficient
Absorption line spacing
Inclination angle (in Chapter 2)
Phase of the wave
Dirac's 6 function
Permittivity
Pyranometer excess (in Chapter 2)
Measurement error (in Chapter 7)
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/1

/1
/1i

/10

/10
v

11
v*

�~
P
Pw
P3
Pa
(J

(J

cPT
c/J(v, v)
ljJ
y
y

L
n

fI

Permittivity of a vacuum
Monochromatic emissivity
Broadband flux emissivity
Zenith angle
Scattering angle in the Mie theory
Scattering angle
Solar zenith angle
Wavelength
Latitude
Cosine of the zenith angle
Permeability
Gaussian points
Cosine of the solar zenith angle
Permeability of a vacuum
Wave number (em-I)
Frequency
Shape factor in the Junge size distribution
�~ function in the discrete-ordinates method
Density
Water vapor density
Ozone density
Density of air
Stefan-Boltzmann constant
Cross section area
Extinction cross section
Scattering cross section
Absorption cross section
Backscattering cross section
Circular freq uency
Single-scattering albedo
Coefficients in the Legendre polynomial expansion for the phase function
Optical depth
Solid angle
Total ozone concentration
Orientation angle
Fraction cloud cover
Azimuthal angle
Eigenfunction in the discrete-ordinates method
Instrumental response function
Longitude
Direct plus diffuse transmission
Total global transmission
Summation operator
3.1415926
Multiplication operator
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SOME USEFUL CONSTANTS

Velocity of light
Planck's constant
Boltzmann's constant
Stefan-Boltzmann constant
Solar constant

Mean radius of the earth
Mean radius of the sun (visible disk)
Mean distance between the earth and the

sun
Angular velocity of rotation of the earth
Standard temperature
Standard pressure
Density of air at standard pressure and

temperature
Acceleration of gravity (at sea level and 4SO

latitude)
Molecular weight of dry air
Specific heat at constant pressure
Specific heat at constant volume
Universal gas constant
Avogadro's number
Loschmidt's number (at standard

temperature and pressure)
Mass of an electron

a 1 cal = 4.1855 x 107 erg

354

c = 2.99793 ± 1 x 101 0 em sec" 1

h = 6.62620 X 10- 2 7 erg sec
K = 1.38062 X 10- 1 6 erg deg- 1

u=5.66961 x IO- S erg cm - Z sec- 1 deg - 4

S = 1.35300 ± 0.021 x 106 erg cm- 2 sec- 1

= 1.94 ± 0.03 cal a cm - Z min - 1

ae = 6.37120 x 108 em
a, = 6.96000 x 1010 cm
d.; = 1.49598 x 1013 ern

w=7.29221 x lO- sradsec- 1

To = 273.16uK

Po = 1.01325 X 106 dyn em - 2 = 1013.25 mb
p = 1.273 X 10- 3 g cm ":'

g = 9.80616 X IOZ em sec"?

M = 28.97 g mole- 1

Cp = 1.004 X 106 crrr' sec "? deg- 1

C, = 7.17 X 106 em? sec- 2 deg- 1

R* = 8.31432 X 107 erg mole- 1 deg- 1

No = 6.02297 X 102 3 mole- 1

no = 2.68719 x 1019 molecule em - 3

me = 9.10956 X 10- 2 8 g
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Electronic charge

Permittivity of a vacuum

Permeability of a vacuum

b 1 statcoulomb = l.jerg em

355

e= 1.60219 x 10- 1 9 C(coulomb, mks)
= 4.803 x 10- 1 0 statcoulomb" (also esu, cgs)

eo = 8.85419 x 10- 1 2 C kg- 1 m - 3 sec? (mks)
= 1 Gaussian unit (cgs)

Jlo = 12.56637 X 10- 7 kg m C- 2 (mks)
= I Gaussian unit (cgs)



Appendix C
DERIVATION OF THE PLANCK
FUNCTION

In accordance with Boltzmann statistics, if No denotes the number of
oscillators in any given energy state, then the number N in a state having
energy higher by an amount s is given by

(Cl)

(C2)

where K is Boltzmann's constant, and T the absolute temperature. On
the basis of Planck's first postulation, an oscillator cannot have any energy
but only energies given by Eq. (1.16). Thus, the possible values of e must be
0, hiJ, 2hiJ, and so on. If the number of oscillators with zero energy is No,
then by virtue ofEq. (C 1), the number with energy hiJ is Noe-hv/KT, the
number with energy 2hiJ is N oe- 2hv/KT, and so on. The total number of
oscillators with frequency iJ for all states is therefore

N = No + Noe-hV/KT + Noe-2hv/KT + ...
= N 0[1 + e-hv/KT + (e- hv/KT)2 + .. -]
�~ N 0/(1 - e- hv/KT).

The total energy of these oscillators may be obtained by multiplying each
term in Eq. (C2) by the appropriate energy:

E = 0· No + hiJ' Noe-hv/KT + 2hiJ' N oe-
2hV/KT + 3hiJ' N oe-

3hV/KT + ...
= hiJNoe-hv/KT[l + 2e- hv/KT + 3(e-hv/KT)2 + ...J
�~ hiJNoe-hv/KT/(l - e- hv/KT)2. (C3)
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(CA)

The average energy per oscillator then is given by

E N h- -hv/KT/(1 _ -hv/KT)2
o ve e _ h- hv/KT

N N 0/(1 _ e hv/KT) - v/(e - 1).

According to Planck's second postulation, the quanta of energy are emitted
only when an oscillator changes from one to another of its quantized energy
states. The average emitted energy of a group of oscillators therefore is
given by Eq. (CA), which is the factor appearing in Planck's formula.

To obtain the Planck function, we let Uv denote the monochromatic
energy density, i.e., the energy per unit volume per unit frequency interval
in a cavity with temperature T. With this definition, we write

Uv = Ahv/(ehV/KT - 1), (CS)

where A is a constant to be determined. In accordance with the principle
of equipartition of energy, the energy density in a cavity is given by the
classical Rayleigh-Jeans formula

(C6)

(C7)

This formula is valid when the temperature T is high and the frequency
v small. So letting hVjKT --+ 0 in Eq. (CS), we find A = Snv 2/c3

. Thus, the
monochromatic energy density is

Uv = c3(ehV/KT _ 1)·

For blackbody radiation, the emitted photons travel in all directions
(4n solid angle) with the speed of light c. Thus, the emitted intensity (or
radiance) in a cavity with a temperature T in units of energy/area/time/sr/
frequency may be expressed by

Bv(T) = uvc/(4n). (CS)

Upon substituting Eq. (C7) into (CS), we obtain the Planck function given
by Eq. (US) in the form



AppendixD
COMPLEX INDEX OF REFRACTION,
DISPERSION OF LIGHT, AND
LORENTZ-LORENZ FORMULA

Within a dielectric, positive and negative charges are impelled to move
in opposite directions by an applied electric field. As a result, electric dipoles
are generated. The product of charges and the separation distance of positive
and negative charges is called the dipole moment, which when divided by
the unit volume is referred to as polarization P. The displacement vector D
(charge per area) within a dielectric is defined in cgs units by

D = eE = E + 4nP,

when s is the permittivity of the medium. Thus,

e = (1 + 4nP . E/E2
) .

(D.l)

(D.2)

(0.3)

The velocity of light in terms of e and the permeability fl is given by

-r:
The permeability fl in air or water is nearly equal to the permeability flo

is vacuum, i.e., fl �~ flo- The index of refraction is defined as the ratio of the
velocity of light in vacuum and in the medium, and may be expressed by

358

Co r: J 4nP . E
�m�=�-�~�'�l�/�e�= 1+ 2.

C E
(D.4)
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But the polarization vector for N dipoles is [see Eq. (3.54)]

P = NIXE.

Inserting Eq. (D.5) into Eq. (D.4) leads to

m 2 = 1 + 4nNIX.

359

(D.5)

(0.6)

Now, we have to find the polarizibility in terms of frequency. On the
basis of the definition of a polarization vector, we have

P = Ner. (0.7)

where e is the charge of an electron, and r represents the vector distance.
Combining Eqs. (D.5) and (D.7), we find

IXE = er. (0.8)

Further, from the Lorentz force equation, the force generated by the electric
and magnetic fields are given by

F = e[E + UJjc)v x H], (D.9)

where v denotes the velocity of an electron, which is very small compared
to the velocity of light. Hence, the force produced by the magnetic field may
be neglected. The force in the vibrating system in terms of the displacement
r is due to (1) the acceleration of the electron; (2) the damping force, which
carries away energy when the vibrating electrons emit electromagnetic
waves, and which is proportional to the velocity of the electrons; and (3) the
restoring force of the vibration, which is proportional to the distance r.
From Newton's second law we find

F eE d2r dr
-=-=-2 �+�y�-�+�~�r�,
me me dt dt

(D.10)

where y and �~ are the damping and restoring coefficient, respectively, and me
is the mass of the electron. In scalar form we write

(D.11)

The homogeneous solution of this second-order differential equation simply
is given by

Substituting Eq. (D.12) into Eq. (0.11), we obtain

�[�(�~ - 4n2v2
) - i2nvy]r = eE/me .

(D.12)

(D.13)
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(D.14)

The natural (or resonant) frequency is defined by Va = Jf/2n. Thus, we find

er eZ 1
(X = - = - �-�~�~�-�~�-�-�-�=�-�-

E me 4n Z(v6- VZ
) - i2nyv

e
Z

[ v6 - V
Z

i yv J
= me 4n Z(v6 - VZ)Z + lvz + 2n 4n Z(v6 - VZ? + yZvZ .

Let the real and imaginary parts of the index of refraction be mr and mi'

respectively. Then

(D.15)

It follows from Eq. (D.6) that

(D.16)

4 N 4 -z-z
mZ _ mZ = 1 �~ Va - V

r 1 + 4 Z(-Z -Z)Z + z-z'me tt Va �~ v Y v

2Nez yv
Zm.m, = ----;;: 4nZ(v6 _ VZ? + yZvz '

For air, mr �~ 1 and mj « m, - 1. Also, in the neighborhood of the resonant
frequency, VZ �~ v6 = (va + v)(v - va) �~ - 2va(v - va). Further, the half
width of the natural broadening depends on the damping and is given in the
form (XN = y/4n, while the line strength S is nNeZ/(mec). Thus, we obtain
the real part

(D.17)

and the absorption coefficient (Born and Wolf, 1975, p.614)

(D.18)

Equation (D.18) is simply the Lorentz profile discussed in Section 1.3.
Shown in Fig. D.1 is the dependence of im, - 1) and kv on the frequency.

The value of im, - 1) increases as the frequency increases when Va - (X > V.
This mode is referred to as normal dispersion under which the light is dis-
persed by a prism into component colors. For the region Va + (X > v> Va - (x,

(mr - 1) decreases with increasing frequency, and it is called anomalous
dispersion. For the range v> Va + «, normal dispersion takes place again,
but (mr - 1) is smaller than unity.

In this appendix we also wish to prove Eq. (3.69). We consider a dielectric
placed between the plates of a parallel plate condenser without the end
effect. Moreover, we consider an individual molecule constituting this di-



Appendix D Index of Refraction and Dispersion of Light 361
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(D.20)

(D.21)

Fig. D.I The real and imaginary parts of the complex index of refraction as functions of the
frequency.

electric and draw a sphere with radius a about this molecule. The molecule
therefore is affected by the fields caused by (1) the charges on the surfaces
of the condenser plates, (2) the surface charge on the dielectric facing the
condenser plates, (3) the surface charge on the spherical boundary of radius a,
and (4) the charges of molecules (other than the one under consideration)
contained within the sphere. For (1) and (2), the electric field produced by
these charges are

E 1 + Ez = (E + 4nP) - 4nP = E. (D.19)

For (3), the electric field, which is produced by the polarization charge
presented on the inside of the sphere, is given by

d
_ 4nPcosedA

£3 - z'4na

where P cos e represents the component of the polarization vector in the
direction of the electric field vector, and the differential area dA = aZ

sin e de d¢ x cos e. Thus,

-lZJr lJr 4nPcose Z. D Ddnd,/, _ 4nP
£3 - 4 Z a sin v cos v [7 'I' - �-�3�~�'

o 0 tta

For (4), it turns out that £4 = O. Thus, the effective electric field is

E' = E + 4nP/3.

But according to Eq. (D.5), we have

P = IXNE' = IXN(E+ 4nP/3).

(D.22)

(D.23)
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It follows that

Appendix D Index of Refraction and Dispersion of Light

P = iXNEj(l - 4niXNj3). (D.24)

Thus, from the definition of the index of refraction in Eq. (DA), we find

m2 = 1 + 4niXNj(1 - 4niXNj3).

Rearranging the terms, we obtain the Lorentz-Lorenz formula

3 m2
- 1

iX=------
4nNm 2 + 2·

(D.25)

(D.26)



AppendixE
PROPERTIES OF THE LEGENDRE
POLYNOMIALS

As indicated in Eqs. (5.42) and (5.43), the solution of the second-order
differential equation

(E.1)

is given by

(E.2)

where J-l = cos 8. When m = 0, P?(J-l) = P1(J-l) are the Legendre polynomials.
It is clear from Eq. (E.1) that

pm( ) = (1 _ 2)m/2 d
m

Pz(J-l) (E.3)
I J-l J-l dJ-lm·

The associated Legendre polynomials satisfy the orthogonal properties

{

O,

fl P'('(J-l)P'!:(J-l)dJ-l = _2_ (l + m)!
21 + 1(1- m)!'

{

O,

f 1 P'['(J-l)P?(J-l) 1 �~�J�-�l�2 = �~ (l + m)!
m(l-m)!'

1#- k,

1= k,

m #-n,

m= n.

(EA)

(E.5)
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Some useful recurrence relations in conjunction with light scattering and
radiative transfer are

dpm dpm
�d�~ = �~ �~ d; = H(l- m + 1)(/ + m)p'!'-l - p'!'+l], (E.6)

(2/ + 1)J.1P,!, = (/ + m)P'!'-l + (l- m + 1)p,!,+ 1, (E.7)

(2/ + 1)(1 - J.12)1/2 p'!' = (P,!,++/ - P,!,_+/). (E.8)

A number of low-order associated Legendre and Legendre polynomials are

Pi(J.1) = (1 - J.12)1/2,

P1(J.1) = �~�(�5�J�.�1�2 - 1)(1 - J.12)1/2,

�P�~�(�J�.�1�) = 15J.1(1 - J.12),

P o(J.1) = 1,

P2(J.1) = �~�(�3�J�.�1�2 - 1),

P4(J.1) = i{35J.14 - 30J.12 + 3).

�P�~�(�J�.�1�) = 3J.1(1 - J.12)1/2,

�P�~�(�J�.�1�) = 3(1 - J.12), (E.9)

�P�~�(�J�.�1�) = 15(1 - J.12)3 /2,

P 1(J.1) = J.1,

P3(J.1) = �~�(�5�J�.�1�3 - 3J.1), (E.10)



AppendixF
THE SCATTERING GEOMETRY

We would like to prove that

cos e = cos (} cos (}' + sin (} sin (}' cos(¢ - ¢').

In reference to Fig. F.1, we let

CD = CO tan (}',

CE = CO tan (},

OD = COsec(}',

OE = CO secii,
(F.l)

where CD and CE are the tangent lines of the arcs CA and CB. For the

Fig. F.l The relationship between the scattering angle, the zenith angle, and the azimuthal
angle in spherical coordinates.
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366 Appendix F Scattering Geometry

triangle i":,CDE we find

DE2 = CD 2 + CE 2
- 2CECD cos DCE.

For the triangle i":,ODE we find

DE2 = OD 2 + OE 2
- 20DOE cos DOE.

Upon substituting Eq. (F.l) into Eqs. (F.2) and (F.3), we obtain

DE 2 = C0 2 [tan2 8' + tan28 - 2tan8'tan8cos(¢ - ¢')J,

DE 2 = C02 [sec2 8' + sec28 - 2sec8'sec8cos0].

It follows that

tan28' + tarr' 8 - 2 tan 8' tan 8 cos(¢ - q/)

= sec28' + sec? 8 - 2 sec 8' sec 8 cos 0.

But sec28 - tan? 8 = 1, Eq. (F.6) becomes

2 - 2sec8'sec8cos0 = -2tan8'tan8cos(¢ - ¢').

Thus,

(F.2)

(F.3)

(FA)

(F.5)

(F.6)

(F.7)

cos 0 = cos 8 cos 8' + sin 8 sin 8' cos(¢ - ¢')

= flfl' + (1 - fl2)1/ 2(1 - fl'2)1 /2 cos(¢ - ¢'). (F.8)



Appendix G
ADDITION THEOREM FOR THE
LEGENDRE POLYNOMIALS

Let g(j1, rjJ) be an arbitrary function on the surface of a sphere where it and
all of its first and second derivatives are continuous. Then g(j1, rjJ) may be
represented by an absolutely convergent series of surface harmonics as

00 1

g(j1,rjJ) = L [aIOP1(j1) + L (aim COS mrjJ + bimsin mrjJ)PT(j1)]. (G.1)
1=0 m= 1

The coefficients are determined by

21 + 1 fZ1t f1
alO = �~ J0 _ 1 g(j1, rjJ )Pl(j1)du drjJ,

(21 + 1)(/- m)! fZ1t f1 m
a1m= 2n(l+m)! Jo _lg(j1,rjJ)Pl(j1)cosmrjJdj1drjJ,

_ (21 + 1)(l - m)! SZ1t f1 m·
bim- 2 (l) g(j1,rjJ)Pl (j1) sm md: du drjJ.

tt + m ! 0 -1

We note that

(G.2)

(G.3)

(G.4)

{

a,
�f�~�1 PT(j1)P'k(j1)dj1 = 2(/ + m)!

(21 + 1)(/- m)!'
1= k,

(G.5)

fZ1t {a,Jo cos md: cos nrjJ drjJ = tt,
m = n,

(G.6)
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and also that P1(1) = 1, P7'(I) = o. Thus, we write

We now define the surface harmonic function in the form

I

}{(fl,1»= L (almcosm1> + blmsin m1»P7'(fl). (G.8)
m=O

Let Y1(fl, 1» of order 1be 9(fl, 1», and by virtue of Eq. (G. 7), we find

(G.9)

On the basis of the scattering geometry, we have

(G.10)

Thus, we may let

I

PI(cos 0) = L (cmcos m1> + dmsin m1»P7'(fl)
m=O

I

= �~�o P1(fl) + m"5;l (cmcosm1> + dmsinm1»P7'(fl)· (G.11)

Upon utilizing the orthogonal properties denoted in Eqs. (G.5) and (G.6),
we find

12 n 51 2n(l + m)!
.lo -1 PI(cos 0)P7'(fl) cos m1> dfld1> = (21 + 1)(1- m)! Cm· (G.12)

We let P7'(fl)cos m1> = Y1(fl, 1», and by virtue ofEq. (G.9), Eq. (G.12) becomes

12 n 51 4nJo -1 PI(cos0)[P7'(fl)cosm1>Jdfld1> = 21 + 1 [P7'(fl) cos m1>Jcose=l

4n
= 21 + 1 P7'(fl')cosm1>'. (G.13)

Note that cos 0 = 1 and 0 = 0, so we have u = u', and 1> = 1>'. It follows
from Eq. (G.ll) that

2(1 + m)! m' ""
c.; = ) PI (fl )cosm<p.

(1- m !
(G.14)
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In a similar manner, we find

d 2(1 + m)! pm( 'l si ,
m = (I _ m)! 1 fl SIn m4> .

Thus, from Eqs. (G.14), (G.15), and (G.ll), we obtain

1 (1- m)!
Pl(cOSE» = P1(fl)P,(f./) + 2 �m�~�l (l + m)! P'('(fl)P'('(fl') cos m(4)' - 4».
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AppendixH
UNITED STATES METEOROLOGICAL
SATELLITE PROGRAMSa
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>
Incli- "Cl-e

Period Perigee Apogee nation
II>=Q.

Name Launched (min) (km) (km) (deg) Instrument" :;;i'

iI:

TIROS I 01 Apr 60 99.2 796 867 483 I TV-WA and I TV-NA e
TIROS II 23 Nov 60 98.3 717 837 48.5 1 TV-WA, 1 TV-NA, passive and active IR scan r.FJ

TIROS III 12 Jul 61 100.4 854 937 47.8 2 TV-WA, HB, IR, IRP �~a
TIROS IV 08 Feb 62 100.4 817 972 48.3 1 TV-WA, IR, IRP, HB II>

0

TIROS V 19 Jun 62 100.5 680 1119 58.1 1 TV-WA, I TV-MA :a
0'

TIROS VI 18 Sep 62 98.7 783 822 58.2 1 TV-WA, I TV-MA 'l9.
n

TIROS VII 19 Jun 63 97.4 713 743 58.2 2 TV-WA, IR, ion probe, HB !.
TIROS VIII 21 Dec 63 99.3 796 878 58.5 lst APT TV direct readout and 1 TV-WA r.FJ

�~

Nimbus I 28 Aug 64 98.3 487 1106 98.6 3 AVCS, 1 APT, HRIR ft
E

TIROS IX 22 Jan 65 119.2 806 2967 96.4 First "wheel"; 2 TV-WA global coverage ft
TIROS X 02 Ju1 65 100.6 848 957 98.6 Sun synchronous, 2 TV-WA �~..
ESSA 1 03 Feb 66 100.2 800 965 97.9 1st operational system, 2 TV-WA, FPR

0
IJQ..

ESSA 2 28 Feb 66 113.3 1561 1639 101.0 2 APT, global operational APT �~a
Nimbus II 15 May 66 108.1 1248 1354 100.3 3 AVCS, HRIR, MRIR '"
ESSA 3 02 Oct 66 114.5 1593 1709 101.0 2 AVCS, FPR
ATS 1 06 Dec 66 24 hr 41,257 42,447 0.2 Spin scan camera
ESSA4 26 Jan 67 113.4 1522 1656 102.0 2APT
ESSA 5 20 Apr 67 113.5 1556 1635 101.9 2 AVCS, FPR
ATS III 05 Nov 67 24 hr 41,166 41,222 0.4 Color spin scan camera
ESSA 6 10 Nov 67 114.8 1622 1713 102.1 2 APT TV
ESSA 7 16 Aug 68 114.9 1646 1691 101.7 2 AVCS, FPR, S Band
ESSA 8 15 Dec 68 114.7 1622 1682 101.8 2 APT TV
ESSA 9 26 Feb 69 115.3 1637 1730 101.9 2 AVCS, FPR, S Band
Nimbus III 14 Apr 69 107.3 1232 1302 101.1 SIRS A, IRIS, MRIR, IDCS, MUSE, IRLS
ITOS 1 23 Jan 70 115.1 1648 1700 102.0 2 APT, 2 AVCS, 2 SR, FPR
Nimbus IV 15 Apr 70 107.1 1200 1280 99.9 SIRS B, IRIS, SCR, THIR, BUV, FWS, IDCS, IRLS, MUSE

v"
'-.l--



V"

t:::l

Incli-
Period Perigee Apogee nation

Name Launched (min) (km) (km) (deg) Instrument"

NOAA 1 11 Dec 70 114.8 1422 1472 102.0 2 APT, 2 AVCS, 2 SR, FPR
NOAA 2 15 Oct 72 114.9 1451 1458 98.6 2 VHRR, 2 VTPR, 2 SR, SPM
Nimbus 5 11 Dec 72 107.1 1093 1105 99.9 SCMR, ITPR, NEMS, ESMR, THIR
NOAA 3 06 Nov 73 1161.1 1502 1512 101.9 2 VHRR, 2 VTPR, 2 SR, SPM >SMS 1 17 May 74 1436.4 35,605 35,975 0.6 VISSR, DCS, WEFAX, SEM '"-e
NOAA 4 15 Nov 74 101.6 1447 1461 114.9 2 VHRR, 2 VTPR, 2 SR, SPM '"=Q.

SMS2 06 Feb 75 1436.5 35,482 36,103 0.4 VISSR, DCS, WEFAX, SEM :;<.

Nimbus 6 12 Jun 75 107.4 1101 1115 99.9 ERB, ESMR, HIRS, LRIR, T&DR, SCAMS, TWERLE, PMR :I:
GOES 1 16 Oct 75 1436.2 35,728 35,847 0.8 VISSR, DCS, WEFAX, SEM e
NOAA 5 29 Jul 76 116.2 1504 1518 102.1 2 VHRR, 2 VTPR, 2 SR, SPM 'JJ

GOES 2 16 Jun 77 1436.1 35,600 36,200 0.5 VISSR, DCS, WEF AX, SEM s::
GOES 3 15 Jun 78 1436.1 35.600 36,200 0.5 VISSR, DCS, WEFAX, SEM a

'"e
TIROS-N 13 Oct 78 98.92 849 864 102.3 AVHRR, HIRS-2, SSU, MSU, HEPAD, MEPED ..e
Nimbus 7 24 Oct 78 99.28 943 956 104.09 LIMS, SAMS, SAM-II, SBUV/TOMS, ERB, SMMR, THIR, CZCS C

�~�.
NOAA 6 27 Jun 79 101.26 807.5 823 98.74 AVHRR, HIRS-2, SSU, MSU, HEPAD, MEPED "e.

'JJ
a Courtesy A. Schnapf, RCA Corporation, Astro-Electronics, Princeton, New Jersey, in a paper, "Evolution ofthe Operational Satellite Service 1958-1984" a

presented at NOAA A Colloquium, May 1979, Washington, D.C. �~
b APT Automatic Picture Transmission TV NEMS Nimbus E Microwave Spectrometer '""tl

AVCS Advanced Vidicon Camera System (l-in. Vidicon) PMR Pressure Modulated Radiometer ..e
II'l

AVHRR Advanced Very High Resolution Radiometer SAM-II Stratospheric Aerosol Measurement-II ..
�~

BUV Backscatter Ultraviolet Spectrometer SAMS Stratospheric and Mesospheric Sounder 3
'"



CZCS
DCS
ERB
ESMR
FPR
FWS
HB
HEPAD
HIRS
HRIR
IDCS
IR
IRIS
IRLS
IRP
ITPR
LIMS
LRIR
MEPED
MRIR
MSU
MUSE

Coastal Zone Color Scanner
Data Collection System
Earth Radiation Budget
Electronic Scanning Microwave Radiometer
Flat Plate Radiometer
Filter Wedge Spectrometer
Heat Budget Instrument
High Energy Proton and Alpha Particle Detector
High Resolution Infrared Sounder
High Resolution Infrared Radiometer
Image Dissector Camera System
Infrared--5 Channel Scanner
Infrared Interferometer Spectrometer
Interrogation, Recording, and Location Subsystem
Infrared Passive
Infrared Temperature Profile Radiometer
Limb Infrared Monitoring of the Stratosphere
Limb Radiance Infrared Radiometer
Medium Energy Proton and Electron Detector
Medium Resolution Infrared Radiometer
Microwave Scanner Unit
Monitor of Ultraviolet Solar Energy

SBUV
SCAMS
SCMR
SCR
SEM
SIRS
SMMR
SPM
SR
SSU
T&DR
THIR
TOMS
TV

TWERLE
VHRR
VISSR
VTPR
WEFAX

Solar Backscatter Ultraviolet Spectrometer
Scanning Microwave Spectrometer
Surface Composition Mapping Radiometer
Selective Chopper Radiometer
Solar Environmental Monitor
Satellite Infrared Spectrometer
Scanning Multichannel Microwave Radiometer
Solar Proton Monitor
Scanning Radiometer
Stratospheric Sounding Unit
Tracking and Data Relay
Temperature Humidity Infrared Radiometer
Total Ozone Mapping Spectrometer
Television Cameras (1/2-in. Vidicon)

NA, narrow angle-12°
MA, medium angle-78°
WA, wide angle--I04°

Tropical Wind Energy Reference Equipment
Very High Resolution Radiometer
Visible Infrared Spin-Scan Radiometer
Vertical Temperature Profile Radiometer
Weather Facsimile

>...,
1
:;<'
:t

e
1JJ

I
[
e
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Appendix]
ANSWERS TO SELECTED EXERCISES

CHAPTER 1

1.3 Bv(T) = 2hv3c2/(ehcv/KT - 1)
1.4 Show that (5 - x) = 5 - e-X, where x = hc/(KA.T), and find x.
1.5 Insert Am = a/T into Eq. (1.19).
1.6 �~�3�0�0�o�K

1.7 7.42 x 10- 2 0 erg sec- l cm "? sr-l/.um, 81.3 erg sec- l cm "? sr- l/

(em-i), 8.57 x 10- 1 4 erg sec- l em"? sr- l/Hz
1.8 5.22 x 105 erg sec- l cm- 2 , 4.69 x 105 erg sec- l cm- 2

, 9.36.um
1.9(b) n = 1,2, ,,1.12 = 1216 A

1.13 f3;.. = 0.1,0.5 m-l, r = 1,5
1.15 I;..(s) = I;..(O)(l - R;..?5;../(1 - R;.'Ti)
1.17 FJr = 0) = nBJTJ2E3(rd + nBJT)[l - 2E 3(rdJ. See Eq. (4.8) for

the definition of the exponential integral E 3 .

CHAPTER 2

2.1 Solar irradiance F;.. = nB;..(T)(a,/dm?
2.2 5754°K
2.3 1.48 x 102 9 erg day-l
2.4 4.53 x 10- 1 0

2.5 1.14 x 101 6 erg sec- l (from the cloud), 1.82 x 105 erg sec- l (at the
surface)
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2.6 F.<o �~ 0.032 cal em - z min - 1, :Y.< �~ 0.68
2.8 254°K (Earth)
2.9 70.8°K

2.10 4.2°K
2.11(a) 1114 cal em - z day-1; (b) 889 cal em - z day-1

2.12 Elevation angle E: = () (poles), 15.44 hr at 45°N in solstice

375

CHAPTER 3

3.1 [0] {[O]Z _ [Oz]J z} + KllJ3[M] + K1zt13[Oz][M] {[O]Z_
Kll[M] KllK13 M]

[Oz]J z } = 0, to a good approximation
Kll[M] + K12K 13[Oz][M]/13

[O]Z �~ [Oz]JZ/{Kll[M] + K1ZK13[Oz][M]/13}
3.2 [O]Z = [Oz]Jz/{Kll[M] + K'll}
3.4 LetI=l,[l 000],[1 -100],[100 ±1]

1
3.6 LetIo=1.(c)[2 �-�~ 0 �~�]�,�I�=�2�,�P�= n%,lr=i;(d)X=O°,

2'-/2
/3 = 22,50; (e) H(4 - .fi)(2.fi - 1)0(2.fi - 1)], H(4 - .fi)(1 -
2.fi)0(1 - 2.fi)]; (f) H(4 + .fi)(2.fi - 3)0(1 + 2.fi)] for right-
hand polarization.

3.7 CJ s(0.7 .urn) = 1.71 x 1O- z7 cm'
3.8 r(0.7 .urn) �~ 0.033
3.9 At z = 10 km, mr �~ 1.000099

3.10 Let the laser beam width be tern; F �~ Fat 1.37 x 10- 11 (at 10 km)
3.11 For A= 10 em, /3" �~ 9.76 X 10- 10 km -1,8.66 X 10- 10 km- 1

CHAPTER 4

4.1 Start from Eqs. (4.23) and (4.24), and use Eq. (4.67).

l
et:) dx tt let:) Jlr4.2 Note: �~�- = - x- 1 / ze- xdx = r(1.) = n

a 1 + X Z 2' a z

4.7 :YdJu) = Fd.</F 0, d'<

4.8 Ft �~�0�.�5 cal cm- z min- 1, Ft �~�0�.�2 cal cm "? min- 1, �a�T�/�a�t�~

-lSCday-1

CHAPTER 5

5.1 Note: V2A = V(V· A) - V x (V x A)
5.4 Let rj; = eiw tR(r)Z(z)<I>(4».
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5.5 See Eqs. (3.42) and (5.104).
5.6 8i = cos- 1J1/(1 + m Z

)

5.7(a) For white corona, use A = 0.55 flm; a::::::: 3.5 flm; (b) fz = 2 (primary),
8 (red) = 137.78°; (c) A = 60°,8' (red) = 21.61°; (d) Note: cPt = A/2,
cPi = (A + �8�~�)�/�2�, where �8�~ is the minimum deviation angle projected

on the horizontal plane, and sin �~ = cos Gi sin �~�~ (prove), 8' (red) =

24.54°.

CHAPTER 6

6.1 Let Fo = 1 and cPo = 0°. For T = 0.1, I(fl = 1, cP = 0°) = 0.028; for
T = 1, I(fl = 0.4, cP = 90 0

) = 0.135

floFowz (Z1tJ1 '" ,6.2 I z(O, u, cP) = 4n J0 -1 P(fl, cP; u , cP )P(fl, cP ; -/Jo, cPo)9(fl, flo,

fl) dfl dcP', where 9(fl, fJo, fl') = 4( 1 ') �[�~�{�1 - eXP [ - T1
flo + fl flo + fl

fl=l=fl

6.3 r(O, fl1) = �~ �{�~�: [2S- - 2b �~�: (S+ + S-)] + �~�~�1 + H}' where K =

_ �~�o [(s- _ �b�:�l�o�)�e�-�T�l�!�~�O + s: + �~�o (s+ + S-)J/(T1
: fl1), H =

2flo [s+ + bflo (S+ + S-)J + Kfll
fJl fl1 2b

6.4 Io(T) = Keh + He- h + [3e-T!M, [3 = Yf/(kZ
- l/fl6)

6.7 w(v) = (1 + xZ)/(2 + XZ), where x = (v - Vo)/Cl, R(fl, flo) = 4( w )
fl + flo

(1 + J3fl)(1 + J3flo)

[1 + flJ3(1 - w)][1 + floJ3(1 - w)]

6.8 w= 0.8, r(flo = 1) ::::::: 0.37, r::::::: 0.34
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CHAPTER 7

7.1(b) v* = 3.13

7.2 1 -1
-1 2 -1 0

-1 2 -1

First difference, H =
-1 2 -1

377

o

7.3(a)

-1 1

12 -k (24 8 )[1 (1 1) -kJ.g(k) = - k2 e + P - k + 2 k2 - k + k2 e , I = 10, k = 5,

g(k) = 0.0490; (b) i = 10, k = 5, g(k) = 0.0489; (d) y = 1, j = 15,
f(x j ) = 0.5251(0.9375), y = 1O- 7, j = 15,f(x) = 1.005(0.9375)

CHAPTER 8

8.1 302°K
8.2 8 = 0.88, T; = 2500K

8.4 Temperature at the ice line Ttx; = 0.95) = - 6.96°C (S = 1.92 cal
ern"? min-i)

8.6 D" �~ 0.26
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A

Absorption, 6-9
of atmosphere, 201
coefficient, 9, 16, 20
cross section, 8, 55
empirical constants for H 20 and CO 2

bands, 61
global, 202
line formation, 14-16
line intensity (strength), 16, 102, 105
line shape, 16-19
in microwave, 275
penetration of solar radiation, 56
pressure dependence, 65, see also Curtis-

Godson approximation
in ultraviolet, 52-53
in visible and infrared, 60-63

Absorption of radiation
by atomic nitrogen, 54
by atomic oxygen, 54
by carbon dioxide, 60, 90-92
by hydrogen atom, 13
by molecular nitrogen, 54
by molecular oxygen, 53, 60
by ozone, 54, 93
by water vapor, 60, 91-93

Absorption of solar radiation, 50-66
by earth-atmosphere system, 322

384

Absorptivity, 13,21,62, see also Absorption
in climate model, 341
global, 340
for ice-free latitude, 344

Adding method, for multiple scattering, 216-
220,243-244, see also Multiple scattering

Addition theorem for Legendre polynomial,
179,367-369

Aerosol, 237-238
optical depth, 238

Air mass, 42, 237, 238
Airy theory for rainbow, 155-157
Albedo

in climate model, 341
global (or spherical), 202, 232, 332, 340, 347
global surface, 327
planetary (or local), 201, 232, 301, 306, 340
single scattering, 143, 178
surface, 215

Angstrom turbidity coefficient, 239
Anisotropic scattering function, empirical,

300
Anomalous dispersion, 360
Arago point, 82
Asymmetry factor, 186
Atmospheric effect, see Greenhouse effect
Atmospheric window, 88
Attenuation, see Extinction



Index

Available potential energy, 333
Avogadro number, 85

B

Babinet
point, 82
principle, 145, see also Diffraction

Backscattering
coefficient, 288
cross section, 286
equation of, 286
geometry of pulsed lidar system, 287

Band, see also Infrared absorption spectrum
fundamental, 92
overtone and combination, 60
P, Q, and R branch, 92, 253
vibration and rotation, 91-93, 253

Band model, see Transmission function
Baroclinic instability, 333
Bauer formula, 130
Beer-Bouguer-Lambert law, 20-21,178,182,

236, 238, 287
Bessel function, 98, 128, 147
Bidirectional reflectance, 201
Blackbody radiation, 9-11, see also Kirchhoff

law, Planck law, Stefan-Boltzmann law,
Wien displacement law

Blue sky, see Rayleigh scattering
Boundary condition, 132, 151, 183, 197
Brewster

angle, 173
point, 82

Brightness temperature, equivalent, 276

C

Carbon dioxide, 50, 117-119,248,250
absorption due to, 248
climatic effect of, 117-119
concentration variation, 117
infrared absorption spectra, 90-93

Cartesian coordinate, 227
Circular polarization, 68
Climate model, see Energy balance model
Cloud

cirrus, 165, 225, 271
CO 2 ice on Mars, 246
infrared satellite picture, 272
NH 3 on Jupiter, 246
property inferred from polarization, 242-

246
Collision broadening, see Pressure broadening
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Column vector, 255
Complex index of refraction, see Refractive

index
Conductivity, 124
Conservative scattering, 189
Convective adjustment, 336
Coriolis force, 269, 333
Corona, 148, see also Diffraction
Covariance matrix, 260
Curtis-Godson approximation, 105-106
Cylindrical coordinate, 229
Cylindrical function, 128

D

Depolarization ratio, 289
Descartes ray, 156, see also Airy theory
Differential equation, 127, 186-188, 193,231
Diffraction by aperture

circular, 145-149
rectangular, 168

Diffuse flux density, 180
Diffuse intensity, 177
Diffusion equation, 230, 343
Diffusivity factor, 97
Dipole moment, 74, 358
Dirac delta function, 184,200,261
Direction cosine

in Cartesian coordinate, 227
in cylindrical coordinate, 229
in spherical coordinate, 228

Discrete-ordinates method for radiative trans-
fer, 189, 192-199,311

boundary condition, 199
characteristic equation, 193, 199
general solution for anisotropic scattering,

198-199
general solution for isotropic scattering,

192-196
law of diffuse reflection for isotropic scat-

tering, 197-198
Dispersion of light, 79, 360
Divergence of net flux density, 63, 107
Dobson spectrometer, 237
Doppler

broadening, 18-19
distribution, 19
line shape, 17

Doubling method, for multiple scattering,
189,216, see also Adding method

Duration of sunlight, see Solar zenith angle
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E

Earth orbit about the sun, 25-28
eccentricity, 35
Milankovitch orbital theory, 36
obliquity, 35
plane of ecliptic, 35
precession, 36

Earth atmosphere
composition of, 51
upper atmosphere, 52
vertical temperature profile, 52

Eddington approximation for radiative trans-
fer, 184-192

Eigenfunction, 198, 344
Eigenvalue, 195, 199
Electric displacement, 123
Electric vector, 123, 129, 150
Electromagnetic spectrum, 1-3
Electromagnetic wave equation, 124-125

in cylindrical coordinate, 173
far field solution, 133-135, see also Mie

scattering
in spherical coordinate, 126

solution, 126-129
Electronic energy, 53
Elliptical polarization, 68
Emission, see Absorption
Emissivity, 12, see also Broadband infrared

emissivity
in microwave region, 276
of surface, 247

Emittance, 6
Energy balance

component, annual latitudinal distribution,
309

equation, 308, 339
model

linear heating law (Budyko), 339
simple diffusion law, 342-347

Energy diagram for hydrogen atom, 15
Energy transport, poleward, 309
Enthalpy, 308
Equation of continuity for electromagnetic

wave, 123
Equation of state, 270
Equation of transfer, 19-20

in Cartesian coordinate, 227
in cylindrical coordinate, 229
for horizontally oriented hexagonal crystal,

225

Index

for plane-parallel atmosphere, 23-25
geometry, 23
intensity distribution diagram, 24

including polarization, 221
solution, 183

in microwave, 276, see also Upwelling
radiance

in spherical coordinate, 228
Equivalent Width, 103, 119
Exponential integral, 94
Extinction cross section, 8

for nonspherical particle, 224
for sample of spheres, 142-143
for sphere, 136-139, see also Mie

scattering
Extinction coefficient, 9, 238, 287
Extinction efficiency, 137

F

Flux, 5
Flux density, 5

daily, 299-301
divergence of, 3, 107
net, 182
outgoing infrared, 343
upward and downward, 182

Four-stream approximation for radiative
transfer, 188, see also Radiative transfer

Fraunhofer diffraction, 146, 168, see also
Diffraction

Fredholm equation of first kind, 252, see also
Linear inversion

Frequency, 3, 275
Fresnel

formula, see Geometric optics, Reflection
coefficient

integral, 136

G

Gain, 160-161, 168, see also Diffraction,
Geometric optics

Gaseous profile, information content of, 249
Gauss formula, 184
Geometric optics, 149-160

amplitude coefficient, 15I- I52
boundary condition, 151
deviation angle, 153
effect of curvature, 152
for hexagonal ice crystal, 166-171
for spherical water drop, 153



Index

Geopotential. 308
Geostrophic wind, 269
Glory, see Rainbow
Gray body, 13
Greenhouse effect, 88, 332

H

H function, 194, 206, 213
Hadley circulation, 333, 346
Half width of spectral line, 18-19, 106,253
Halo, 157-160, 160-164, see also Geometric

optics
Hankel function of second kind, 129
Heat budget, 318, 328, see also Radiative

budget
Helmholtz principle of reciprocity, 202
HenyeyGreenstein phase function, 188, see

also Phase function
Hydrostatic equation, 64, 247, 270, 308

Ice crystal
geometrical ray tracing, 167
light scattering by, 165-172, see also Geo-

metric optics
orientation problem, 168
scattering pattern, 168
Snell law, 168

Index of refraction, see Refractive index
Indicatrix, see Phase function
Infrared absorption spectrum, 87-93, 248-

252
characteristics of, 248
from Nimbus IV IRIS instrument, 89
outgoing radiance, 250

Infrared band model, see Transmission
function

Infrared broadband flux emissivity, 109-112
for carbon dioxide, 110
overlap correction, 112
for water vapor, 110

Infrared cooling rate
computation of, 106, 109
cooling mechanism for atmospheric col-

umn, 308
in clear tropical atmosphere, 108
zonally averaged meridional profile, 313

Infrared global photograph from GOES satel-
lite, 272
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Infrared radiation, 93-95
observed from satellite, 30I
transfer of, in scattering atmosphere, 181,

231
Infrared radiative transfer, see Radiative

transfer, Infrared radiation
Infrared sensing

cirrus cloud, 271-274
limb scanning method, 267 -271
temperature, see Linear inversion, Non-

linear inversion
Insolation, 45-48

daily variation, 47, 300
normalized mean annual distribution, 340,

344
Instrument response (or slit) function, 247
Integro-partial-differential equation, 227
Intensity, 5, 75, 135

zero-order, 184, 200
Invariant imbedding for radiative transfer,

211,232
Irradiance, 5
Isotropic radiation, 12, 25
Isotropic scattering, 205, 197-198

K

Kirchhoff law, 12-13, see also Blackbody
radiation

L

Ladenberg and Reiche function, 98
Laser radar, see Lidar
Law of thermodynamics, 308
Legendre polynomial, 130, 179,231, 344

addition theorem for, 367-369
associated, 128, 180
properties of, 363- 364

Lidar, 285
equation for back scattering, 288

Limb darkening, 244
Limb scanning, 267-274

radiance equation, 269
viewing geometry, 268
weighing function, 270

Linear inversion, 254
Backus-Gilbert inversion method, 261-263
constrained method, 257-259
statistical method, 259-260

Linear polarization, 68, see also Polarization
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Long-wave radiation, 90, see also Infrared
radiation

from atmospheric top, 323
Lorentz force equation, 359
Lorentz-Lorenz formula, 78

derivation of, 361-362
Lorentz profile, 16-18,253,360

line shape, 17
Loschmidt number, 55
Luminance, 5
Luminosity, 6

M

Magnetic induction, 123
Magnetic vector, 123, 129, 150
Mass absorption cross section, see Absorption

coefficient
Mass extinction cross section, see Extinction

cross section, Extinction coefficient
Matrix, 255

inverse of, 257
transpose of, 356

Maxwell-Boltzmann distribution, 18
Maxwell equation, 123-124, 150
Medium resolution scanning radiometer, see

Radiation observation from satellite
Meteorological Satellite Program, 370-373
Microwave absorption spectrum, 275
Microwave radiative transfer, 276-278

solution of, 277
Microwave sensing, 278-285

atmospheric water, 278-280
temperature, 280-285

Mie scattering, 7, 129-135, 164, see also
Extinction cross section, Scattering, Scat-
tering cross section

boundary condition, 132
coefficient for the scattered wave, 133
comparison with measurement, 164
far field solution, 133-135
fundamental equation for, 135
intensity function, 135

Mixing ratio, 247
Monodisperse, 149
Monte Carlo method for radiative transfer,

244
Multiple scattering, 8, see also Equation of

transfer, Principle of Invariance, Radia-
tive transfer

adding method for, 216-220

Index

in Cartesian coordinate, 227
in cylindrical coordinate, 229
formulation of, 178-179
inclusion of surface reflection, 213-216
by oriented nonspherical particle, 223-226
including polarization, 220-223
in spherical coordinate, 228
in three-dimensional space, 226-229

N

Natural broadening, 360
Natural light, see Stokes parameter
Neumann function, 128
Neutral point, 82, see also Polarization
Nonconservative scattering, 199
Nonlinear inversion, 263-267

iteration method, 265-266
relaxation method, 263

Normal dispersion, 360

o

Optical thickness (depth), 22-23, 79, 94-95,
178,246

for aerosol, 238
configuration of, 22
for molecule, 79

Order of scattering approximation, 182-184
Outgoing radiance in terms of blackbody

temperature, 251
Ozone

concentration, 51
estimated from reflected intensity, 236-242

surface reflection contribution, 240
estimated from transmitted sunlight, 249
infrared absorption spectrum, 90-93
ultraviolet absorption spectrum, 52-53

Ozone layer
equilibrium ozone concentration, 58
formation of, 56-59

Oxygen
A band, 60
spin-rotation band, 275
temperature inversion in microwave, 250,

281-284

P

Particle size distribution, 142
gamma function, 161
Junge distribution, 239



Index

zeroth order log-normal, 163
Permeability, magnetic, 124
Permittivity, 124,358
Phase, of electromagnetic waves, 67
Phase angle, 245
Phase function, 77

for aerosol, 162
expansion in Legendre polynomial, 179, 181
for ice crystal, 170
for molecule, 77, 288
for sphere, 142
for water drop, 162, 164

Phase matrix, see Scattering phase matrix
Photodissociation, 56, 59
Planck function, 10, 181, 231, 248, 252, 263,

276
derivation of, 356-357

Planck law, 9-11, see also Blackbody radia-
tion, Planck function

Plane-parallel atmosphere, 177-182
transfer of solar radiation in, 177, see also

Equation of transfer, Multiple scatter-
ing, Radiative transfer

Poincare sphere, 71, see also Polarization
Poisson distribution, 102
Polarizability, 74, 78, 358, see also Rayleigh

scattering
Polarization, see also Stokes parameter, Po-

larized light
degree of, 72

linear, 81
for aerosol, 162
for ice crystal, 171
for molecule, 80-81
for water drop, 162-164

of sunlight reflected by
cloud, 243
Venus, 245

representation of, see Polarized light
Polarized light, see also Polarization, Stokes

parameter
geometrical representation, 69
representation for

light beam, 71-73
simple wave, 66-71

Polydispersion, 161
Power, 5
Poynting vector, 67
Precipitable water, see also Water vapor

determination of, 237-239
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Predictor matrix, 260
Pressure broadening, 16-18, see also Lorentz

profile
half width, 16

Principle of invariance
for finite atmosphere, 206-211
for semi-infinite atmosphere, 203-206

Principle of reciprocity, 215
Pyranometer,41
Pyrheliometer,41

Q

Quantum number, 14,26
Quarternary glaciation, 341

R

Radar backscattering coefficient, 85, 288, see
also Backscattering

Radiance, 5, see also Upwelling radiance
clear column, 273
cloudy, 273

Radiation and general circulation, 332-333
Radiation budget, 293-295

annual, 330
global, 301-305, 327-332
in global energy balance, 307-310
of latitudinal zone, 305-307
net, 319, 326
theoretical calculation, 311
zonal average, 321-327

Radiation chart, 112-116
Radiation observation from satellite, 296-301
Radiative equilibrium, model

global, 333-335
one-dimensional, 335-339
two-layer global, 334

Radiative transfer, 19-25, see also Adding
method, Discrete-ordinates method,
Equation of transfer, Multiple scattering

approximation for, 182-192
Radiometric quantity, 4-6
Rainbow, 154-157, 160-164, see also Geo-

metric optics
integral, 157

Random orientation, 224
Ray optics, see Diffraction, Geometric optics

comparison with Mie theory, 160-164
Rayleigh-Jeans law, 276, 357
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Rayleigh scattering, 6-9, 73-83, 288, see also
Scattering

blue sky, 80
phase function, 77.
sky polarization, 83
theoretical development of, 74-76

Reflected flux density, daily average, 299
Reflected intensity for finite atmosphere, 183
Reflection, 188,201

value of, 189-191
Reflection coefficients

including absorption, 174
Fresnel, 151

Reflection function, 200, 203, 217
Reflection matrix, 200
Reflectivity, 21
Refractive index, 78, 138, ISO, 174

complex, 358-361
Relaxation equation, 264
Remote sensing, 234

active, see Lidar
passive, see Infrared sensing, Microwave

sensing
Rotational energy, 53

s
Satellite, see also Meteorological Satellite

Program
DMSP,281
GOES, 272
Nimbus, 89, 236, 251, 280, 281, 299, 332
NOAA, 254
TIROS, 235, 296

Saturn ring, 246
Scattering phase matrix, 139-144, see also

Stokes parameter, Polarization
multiple scattering, 222
for nonspherical particle, 225
for sample of spheres, 144
for single homogeneous sphere, 141

Scattering, 6-9, see also Mie scattering,
Multiple scattering, Rayleigh scattering

angular pattern, 7
configuration for nonspherical particle, 224
by dipole, 75
independent, 141
of sunlight, 177, see also Scattering of solar

radiation, Multiple scattering
Scattering angle, 75, 179, 223, 365

Index

Scattering coefficient, 9, 143, 287
Scattering cross section, 8

for molecule, 78-79
for nonspherical particle, 224
for sphere, 137

Scattering efficiency, 137-139
approximation for, 139

Scattering function, Chandrasekhar, 202
Scattering geometry, 179, 365-366
Scattering of solar radiation, 180, see also

Multiple scattering, Radiative transfer
azimuthal independence, 180
basic equation for, 178, 180

Schwarzchild equation, 22-23
Season, 37
Semi-infinite atmosphere, 197
Shaping constant in Junge size distribution,

239
Short-wave radiation, 90, see also Solar

radiation
Size distribution, see Particle size distribution
Size parameter, 137, 147,288
Sky polarization, see Rayleigh scattering
Snell law, 149, 168, see also Geometric optics
Solar constant, 38-45, 327, 340

determination of, 41-45
long method, 42-43, 237-239
satellite platform, 45
short method, 44-45

standard value for, 38, 44
Solar flux density, 177, 200, 340

absorbed by earth-atmosphere system, 340
Solar heating rate

computation of, 63-66
heating mechanism for atmospheric col-

umn,308
zonally averaged meridional profile, 313

Solar radiation, 50, see also Scattering of
solar radiation, Solar constant, Solar
spectrum

Solar spectrum, 38-41
observed, 39
in ultraviolet region, 40

Solar zenith angle, 46, 63, 178, 312, 327
Solid angle, 3-4,177,298
Spectral transmission function, 248
Spectral weighting function, 248
Spectrobolometer,41
Spherical coordinate, 228
Spherical harmonics method for radiative

transfer, 231
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Source function, 20
in infrared region, 22, 93
in microwave region, 278
including polarization, 222
in solar region, 178
in three-dimensional space, 227

Statistical method of temperature retrieval in
microwave, 282, see also Linear inversion

Stefan-Boltzmann law, II, 327, see also
Blackbody radiation

Stokes parameters, 66-73, 221, see also
Polarization

Successive order of scattering, 241, see also
Order of scattering approximation

Sun, 28-35
chromosphere of, 30
composition of, 28
corona of, 31
eclipse, 31
effective (equilibrium) temperature of, 30,

41
flash spectrum, 31
photosphere of, 29
solar wind, 31
zone of convection, 29

Sun photometer, 120,239
Sunspot

cycle, 32, 34, 35
photograph of, 33
solar flare, 32

Surface emissivity in microwave, 278, see also
Emissivity

Surface temperature, 249, see also Tem-
perature

T

Temperature, equilibrium
of earth-atmosphere system, 298-334
of sun, 30,41

Temperature, global surface, 340
perturbation analysis on, 341

Temperature lapse rate, 336
Temperature profile

inversion, see also Linear inversion, Non-
linear inversion

from infrared, 250-252, 267
from microwave, 284

under local-thermal equilibrium, 338
Terrestrial infrared radiation, see Infrared

radiation
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Thermal equilibrium, 336
Thermodynamic equilibrium, 12
Three-body collision, 56
Transfer of infrared radiation in scattering

atmosphere, 181, 231, see also Infrared
radiation

Transfer of solar radiation in cirrus cloud
layer, 225, see also Equation of transfer

Transformation matrix, 140, 173, see also
Scattering phase matrix

Translational energy, 53
Transmission, 188,201

global diffuse, 202
value of, 189-191

Transmission function, in infrared, 95-97
linear absorption, 98
regular (Elsasser) model, 99
single spectral line, 97-99
slab (or diffuse), 96
in spectral flux density, 96
square root absorption, 98
statistical (Goody) model, 102

band parameter, 104
Transmission function, in multiple scattering,

202,217,247
Chandrasekhar,202

Transmission function, for VTPR, 254, 291
Transmission matrix, 200
Transmittance, see also Transmission function

for liquid water, 279
in microwave, 275
temperature dependence of slab, 114

Transmissivity, 21, 42, see also Transmission
function

cloud, 273
Transmitted intensity for finite atmosphere,

183,200
Tropic

of Cancer, 37
of Capricorn, 38

Turbidity, 82
determination of, 237-239

Two-stream approximation for radiative
transfer, 184-192, see also Multiple
scattering, Radiative transfer

u

Ultraviolet spectrum, see Absorption in ultra-
violet, Solar spectrum

Unit vector, 125, 129,227
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Upwelling direction, 246 
Upwelling radiance, 273, 276, see also 

Radiance 

V 

Velocity of light, 358 
Vertical temperature profile radiometer, 253 
Vibrational energy, 53 
Visibility, 26 
Visible radiation, see Solar radiation, Solar 

Voigt profile, 19 
spectrum 

W 

Water dimer, 93 
Water vapor 

concentration, 50 
infrared absorption, 60-63, 90-93,249 

Wave front, cubic, 1.53, 156, see also Airy 
theory 

Wavelength, 3 

Wave number, 3 
Weighting function, 247 

for DMSP, 282 
for limb scanning radiometer, 270 
property of, 252 
for VTPR, 254 

radiation 

from satellite 

Wien displacement law, 12, see also Blackbody 

Wisconsin sensor, see Radiation observation 

X 

X function, 21 1-21 3 

Y 

Yfunction. 211-213 

Z 

Z function, 198 
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